GC详解
Posted youzhongmin
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了GC详解相关的知识,希望对你有一定的参考价值。
GC介绍
对于GC来说,当程序员创建对象时,GC就开始监控这个对象的地址、大小以及使用情况。通常,GC采用有向图的方式记录和管理堆(heap)中的所有对象。通过这种方式确定哪些对象是"可达的",哪些对象是"不可达的".当GC确定一些对象为"不可达"时,GC就有责任回收这些内存空间。
GC算法
最基础的收集算法 —— 标记/清除算法
标记/清除算法的基本思想就跟它的名字一样,分为“标记”和“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成后统一回收所有被标记的对象。
标记阶段:标记的过程其实就是前面介绍的可达性分析算法的过程,遍历所有的GC Roots对象,对从GC Roots对象可达的对象都打上一个标识,一般是在对象的header中,将其记录为可达对象;
清除阶段:清除的过程是对堆内存进行遍历,如果发现某个对象没有被标记为可达对象(通过读取对象header信息),则将其回收。
上图是标记/清除算法的示意图,在标记阶段,从对象GC Root 1可以访问到B对象,从B对象又可以访问到E对象,因此从GC Root 1到B、E都是可达的,同理,对象F、G、J、K都是可达对象;到了清除阶段,所有不可达对象都会被回收。
在垃圾收集器进行GC时,必须停止所有Java执行线程(也称"Stop The World"),原因是在标记阶段进行可达性分析时,不可以出现分析过程中对象引用关系还在不断变化的情况,否则的话可达性分析结果的准确性就无法得到保证。在等待标记清除结束后,应用线程才会恢复运行。
前面刚提过,后续的收集算法是在标记/清除算法的基础上进行改进而来的,那也就是说标记/清除算法有它的不足。其实了解了它的原理,其缺点也就不难看出了。
1、效率问题。标记和清除两个阶段的效率都不高,因为这两个阶段都需要遍历内存中的对象,很多时候内存中的对象实例数量是非常庞大的,这无疑很耗费时间,而且GC时需要停止应用程序,这会导致非常差的用户体验。
2、空间问题。标记清除之后会产生大量不连续的内存碎片(从上图可以看出),内存空间碎片太多可能会导致以后在程序运行过程中需要分配较大对象时,无法找到足够的连续内存而不得不提前触发另一次垃圾回收动作。
复制算法
为了解决效率问题,复制算法出现了。复制算法的原理是:将可用内存按容量划分为大小相等的两块,每次使用其中的一块。当这一块的内存用完了,就将还存活的对象复制到另一块内存上,然后把这一块内存所有的对象一次性清理掉。用图说明如下:
回收前:
回收后:
复制算法每次都是对整个半区进行内存回收,这样就减少了标记对象遍历的时间,在清除使用区域对象时,不用进行遍历,直接清空整个区域内存,而且在将存活对象复制到保留区域时也是按地址顺序存储的,这样就解决了内存碎片的问题,在分配对象内存时不用考虑内存碎片等复杂问题,只需要按顺序分配内存即可。
复制算法简单高效,优化了标记/清除算法的效率低、内存碎片多的问题。但是它的缺点也很明显:
1、将内存缩小为原来的一半,浪费了一半的内存空间,代价太高;
2、如果对象的存活率很高,极端一点的情况假设对象存活率为100%,那么我们需要将所有存活的对象复制一遍,耗费的时间代价也是不可忽视的。
基于以上复制算法的缺点,由于新生代中的对象几乎都是“朝生夕死”的(达到98%),现在的商业虚拟机都采用复制算法来回收新生代。由于新生代的对象存活率低,所以并不需要按照1:1的比例来划分内存空间,而是将内存分为一块较大的Eden空间和两块较小的From Survivor空间、To Survivor空间,三者的比例为8:1:1。每次使用Eden和From Survivor区域,To Survivor作为保留空间。GC开始时,对象只会存在于Eden区和From Survivor区,To Survivor区是空的。GC进行时,Eden区中所有存活的对象都会被复制到To Survivor区,而在From Survivor区中,仍存活的对象会根据它们的年龄值决定去向,年龄值达到年龄阀值(默认为15,新生代中的对象每熬过一轮垃圾回收,年龄值就加1)的对象会被移到老年代中,没有达到阀值的对象会被复制到To Survivor区。接着清空Eden区和From Survivor区,新生代中存活的对象都在To Survivor区。接着, From Survivor区和To Survivor区会交换它们的角色,也就是新的To Survivor区就是上次GC清空的From Survivor区,新的From Survivor区就是上次GC的To Survivor区,总之,不管怎样都会保证To Survivor区在一轮GC后是空的。GC时当To Survivor区没有足够的空间存放上一次新生代收集下来的存活对象时,需要依赖老年代进行分配担保,将这些对象存放在老年代中。
标记/整理算法
复制算法在对象存活率较高时要进行较多的复制操作,效率会变得很低,更关键的是,如果不想浪费50%的内存空间,就需要有额外的内存空间进行分配担保,以应对内存中对象100%存活的极端情况,因此,在老年代中由于对象的存活率非常高,复制算法就不合适了。根据老年代的特点,高人们提出了另一种算法:标记/整理算法。从名字上看,这种算法与标记/清除算法很像,事实上,标记/整理算法的标记过程任然与标记/清除算法一样,但后续步骤不是直接对可回收对象进行回收,而是让所有存活的对象都向一端移动,然后直接清理掉端边线以外的内存。
回收前:
回收后:
可以看到,回收后可回收对象被清理掉了,存活的对象按规则排列存放在内存中。这样一来,当我们给新对象分配内存时,jvm只需要持有内存的起始地址即可。标记/整理算法不仅弥补了标记/清除算法存在内存碎片的问题,也消除了复制算法内存减半的高额代价,可谓一举两得。但任何算法都有缺点,就像人无完人,标记/整理算法的缺点就是效率也不高,不仅要标记存活对象,还要整理所有存活对象的引用地址,在效率上不如复制算法。
三种算法的比较
效率:复制算法 > 标记/整理算法 > 标记/清除算法(标记/清除算法有内存碎片问题,给大对象分配内存时可能会触发新一轮垃圾回收)
内存整齐率:复制算法 = 标记/整理算法 > 标记/清除算法
内存利用率:标记/整理算法 = 标记/清除算法 > 复制算法
终极算法 —— 分代收集算法
分代的垃圾回收策略,是基于这样一个事实:不同的对象的生命周期是不一样的。因此,不同生命周期的对象可以采取不同的回收算法,以便提高回收效率。
年轻代(Young Generation)
1.所有新生成的对象首先都是放在年轻代的。年轻代的目标就是尽可能快速的收集掉那些生命周期短的对象。
2.新生代内存按照8:1:1的比例分为一个eden区和两个survivor(survivor0,survivor1)区。一个Eden区,两个 Survivor区(一般而言)。大部分对象在Eden区中生成。回收时先将eden区存活对象复制到一个survivor0区,然后清空eden区,当这个survivor0区也存放满了时,则将eden区和survivor0区存活对象复制到另一个survivor1区,然后清空eden和这个survivor0区,此时survivor0区是空的,然后将survivor0区和survivor1区交换,即保持survivor1区为空, 如此往复。
3.当survivor1区不足以存放 eden和survivor0的存活对象时,就将存活对象直接存放到老年代。若是老年代也满了就会触发一次Full GC,也就是新生代、老年代都进行回收
4.新生代发生的GC也叫做Minor GC,MinorGC发生频率比较高(不一定等Eden区满了才触发)
年老代(Old Generation)
1.在年轻代中经历了N次垃圾回收后仍然存活的对象,就会被放到年老代中。因此,可以认为年老代中存放的都是一些生命周期较长的对象。
2.内存比新生代也大很多(大概比例是1:2),当老年代内存满时触发Major GC即Full GC,Full GC发生频率比较低,老年代对象存活时间比较长,存活率标记高。
持久代(Permanent Generation)
用于存放静态文件,如Java类、方法等。持久代对垃圾回收没有显著影响,但是有些应用可能动态生成或者调用一些class,例如Hibernate 等,在这种时候需要设置一个比较大的持久代空间来存放这些运行过程中新增的类。
垃圾收集器
新生代收集器使用的收集器:Serial、PraNew、Parallel Scavenge
老年代收集器使用的收集器:Serial Old、Parallel Old、CMS
Serial收集器(复制算法)
新生代单线程收集器,标记和清理都是单线程,优点是简单高效。
Serial Old收集器(标记-整理算法)
老年代单线程收集器,Serial收集器的老年代版本。
ParNew收集器(停止-复制算法)
新生代收集器,可以认为是Serial收集器的多线程版本,在多核CPU环境下有着比Serial更好的表现。
Parallel Scavenge收集器(停止-复制算法)
并行收集器,追求高吞吐量,高效利用CPU。吞吐量一般为99%, 吞吐量= 用户线程时间/(用户线程时间+GC线程时间)。适合后台应用等对交互相应要求不高的场景。
Parallel Old收集器(停止-复制算法)
Parallel Scavenge收集器的老年代版本,并行收集器,吞吐量优先
CMS(Concurrent Mark Sweep)收集器(标记-清理算法)
高并发、低停顿,追求最短GC回收停顿时间,cpu占用比较高,响应时间快,停顿时间短,多核cpu 追求高响应时间的选择
GC的执行机制
由于对象进行了分代处理,因此垃圾回收区域、时间也不一样。GC有两种类型:Scavenge GC和Full GC。
Scavenge GC
一般情况下,当新对象生成,并且在Eden申请空间失败时,就会触发Scavenge GC,对Eden区域进行GC,清除非存活对象,并且把尚且存活的对象移动到Survivor区。然后整理Survivor的两个区。这种方式的GC是对年轻代的Eden区进行,不会影响到年老代。因为大部分对象都是从Eden区开始的,同时Eden区不会分配的很大,所以Eden区的GC会频繁进行。因而,一般在这里需要使用速度快、效率高的算法,使Eden去能尽快空闲出来。
Full GC
对整个堆进行整理,包括Young、Tenured和Perm。Full GC因为需要对整个堆进行回收,所以比Scavenge GC要慢,因此应该尽可能减少Full GC的次数。在对JVM调优的过程中,很大一部分工作就是对于FullGC的调节。有如下原因可能导致Full GC:
1.年老代(Tenured)被写满
2.持久代(Perm)被写满
3.System.gc()被显示调用
4.上一次GC之后Heap的各域分配策略动态变化
以上是关于GC详解的主要内容,如果未能解决你的问题,请参考以下文章