MapReduce实例:编写MapReduce程序,统计每个买家收藏商品数量
Posted jmdd
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了MapReduce实例:编写MapReduce程序,统计每个买家收藏商品数量相关的知识,希望对你有一定的参考价值。
现有某电商网站用户对商品的收藏数据,记录了用户收藏的商品id以及收藏日期,名为buyer_favorite1。
buyer_favorite1包含:买家id,商品id,收藏日期这三个字段,数据以“ ”分割,样本数据及格式如下:
- 买家id 商品id 收藏日期
- 10181 1000481 2010-04-04 16:54:31
- 20001 1001597 2010-04-07 15:07:52
- 20001 1001560 2010-04-07 15:08:27
- 20042 1001368 2010-04-08 08:20:30
- 20067 1002061 2010-04-08 16:45:33
- 20056 1003289 2010-04-12 10:50:55
- 20056 1003290 2010-04-12 11:57:35
- 20056 1003292 2010-04-12 12:05:29
- 20054 1002420 2010-04-14 15:24:12
- 20055 1001679 2010-04-14 19:46:04
- 20054 1010675 2010-04-14 15:23:53
- 20054 1002429 2010-04-14 17:52:45
- 20076 1002427 2010-04-14 19:35:39
- 20054 1003326 2010-04-20 12:54:44
- 20056 1002420 2010-04-15 11:24:49
- 20064 1002422 2010-04-15 11:35:54
- 20056 1003066 2010-04-15 11:43:01
- 20056 1003055 2010-04-15 11:43:06
- 20056 1010183 2010-04-15 11:45:24
- 20056 1002422 2010-04-15 11:45:49
- 20056 1003100 2010-04-15 11:45:54
- 20056 1003094 2010-04-15 11:45:57
- 20056 1003064 2010-04-15 11:46:04
- 20056 1010178 2010-04-15 16:15:20
- 20076 1003101 2010-04-15 16:37:27
- 20076 1003103 2010-04-15 16:37:05
- 20076 1003100 2010-04-15 16:37:18
- 20076 1003066 2010-04-15 16:37:31
- 20054 1003103 2010-04-15 16:40:14
- 20054 1003100 2010-04-15 16:40:16
要求编写MapReduce程序,统计每个买家收藏商品数量。
package mapreduce; import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WordCount { public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { Job job = Job.getInstance(); job.setJobName("WordCount"); job.setJarByClass(WordCount.class); job.setMapperClass(doMapper.class); job.setReducerClass(doReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); Path in = new Path("hdfs://localhost:9000/mymapreduce1/inyer_favourite9"); Path out = new Path("hdfs://localhost:9000/mymapreduce1/out"); FileInputFormat.addInputPath(job, in); FileOutputFormat.setOutputPath(job, out); System.exit(job.waitForCompletion(true) ? 0 : 1); } public static class doMapper extends Mapper<Object, Text, Text, IntWritable>{ public static final IntWritable one = new IntWritable(1); public static Text word = new Text(); @Override protected void map(Object key, Text value, Context context) throws IOException, InterruptedException { StringTokenizer tokenizer = new StringTokenizer(value.toString(), " "); word.set(tokenizer.nextToken()); context.write(word, one); } } public static class doReducer extends Reducer<Text, IntWritable, Text, IntWritable>{ private IntWritable result = new IntWritable(); @Override protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable value : values) { sum += value.get(); } result.set(sum); context.write(key, result); } } }
以上是关于MapReduce实例:编写MapReduce程序,统计每个买家收藏商品数量的主要内容,如果未能解决你的问题,请参考以下文章