动态规划 01背包问题

Posted likeghee

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了动态规划 01背包问题相关的知识,希望对你有一定的参考价值。

0-1背包
Description
给定n(n<=100)种物品和一个背包。物品i的重量是wi,价值为vi,背包的容量为C(C<=1000)。问:应如何选择装入背包中的物品,使得装入背包中物品的总价值最大? 在选择装入背包的物品时,对每种物品i只有两个选择:装入或不装入。不能将物品i装入多次,也不能只装入部分物品i。
Input
共有n+1行输入: 第一行为n值和c值,表示n件物品和背包容量c; 接下来的n行,每行有两个数据,分别表示第i(1≤i≤n)件物品的重量和价值。
Output
输出装入背包中物品的最大总价值。
 
Sample Input 1
5 10 2 6 2 3 6 5 5 4 4 6
Sample Output 1
15
 
 
分析 :
  n为有n个物品,c为背包空间
 
  设dp[i][j]为在前i个物品中选择,背包空间为j时,装入的最大价值,初始化:边界0初始化为0,答案在dp[n][c]
  如果当前j装得下 j >= obj_weight,状态方程:
  dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - obj_weight] + obj_price);
  如果当前j装不下,状态方程:
  dp[i][j] = dp[i - 1][j];
 
#include <iostream>
using namespace std;

#define NUM 1000

int dp[NUM][NUM];

int max(int a, int b) {
    return a > b ? a : b;
}
int main() {
    int n;//n个物品
    int c;//背包容量
    cin >> n >> c;
    int  weight_price_table[100][2];
    
    for (int i = 1; i <= n; i++) {
        cin >> weight_price_table[i][0] >> weight_price_table[i][1];
    }
    
    //初始化边界 当i=0,j=0时 dp = 0
    for (int i = 0; i < NUM; i++) {
        dp[0][i] = 0;
        dp[i][0] = 0;
    }


    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= c; j++) {
            int obj_weight = weight_price_table[i][0];
            int obj_price = weight_price_table[i][1];
            if (j >= obj_weight) {//如果装得下
                dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - obj_weight] + obj_price);
            }
            else {//装不下
                dp[i][j] = dp[i - 1][j];
            }
            
        }
    }

    cout << dp[n][c];



}

 

 

以上是关于动态规划 01背包问题的主要内容,如果未能解决你的问题,请参考以下文章

动态规划问题3--多重背包

动态规划之01背包问题(含代码C)

动态规划-第二节:动态规划之背包类型问题

动态规划本质理解:01背包问题

动态规划背包问题总结

分别用回溯法和动态规划求0/1背包问题(C语言代码)