Pandas | 08 重建索引

Posted summer-skr--blog

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Pandas | 08 重建索引相关的知识,希望对你有一定的参考价值。

重新索引会更改DataFrame的行标签和列标签。

可以通过索引来实现多个操作:

  • 重新排序现有数据以匹配一组新的标签。
  • 在没有标签数据的标签位置插入缺失值(NA)标记。

 

import pandas as pd
import numpy as np

N=20

df = pd.DataFrame({
   A: pd.date_range(start=2016-01-01,periods=N,freq=D),
   x: np.linspace(0,stop=N-1,num=N),
   y: np.random.rand(N),
   C: np.random.choice([Low,Medium,High],N).tolist(),
   D: np.random.normal(100, 10, size=(N)).tolist()
})
print(df)
print(
)

#reindex the DataFrame
df_reindexed = df.reindex(index=[0,2,5], columns=[‘A‘, ‘C‘, ‘B‘])      # 将符合的提取出来了
print (df_reindexed)

输出结果:

 

            A     x         y       C           D
0 2016-01-01 0.0 0.910736 Low 105.308796
1 2016-01-02 1.0 0.570500 Low 91.024238
2 2016-01-03 2.0 0.930298 High 112.359308
3 2016-01-04 3.0 0.251355 Medium 106.155192
4 2016-01-05 4.0 0.579235 Low 90.079651
5 2016-01-06 5.0 0.623852 High 110.592218
6 2016-01-07 6.0 0.621130 Medium 96.222673
7 2016-01-08 7.0 0.989647 Medium 92.253444
8 2016-01-09 8.0 0.506653 Medium 102.601417
9 2016-01-10 9.0 0.099482 Low 97.721659
10 2016-01-11 10.0 0.254750 Medium 75.502131
11 2016-01-12 11.0 0.543014 Medium 88.895951
12 2016-01-13 12.0 0.911283 Medium 79.526056
13 2016-01-14 13.0 0.255296 Low 92.248119
14 2016-01-15 14.0 0.205302 Low 103.301747
15 2016-01-16 15.0 0.246407 Low 107.158250
16 2016-01-17 16.0 0.202039 High 96.411279
17 2016-01-18 17.0 0.734529 High 88.177103
18 2016-01-19 18.0 0.275703 Medium 82.885365
19 2016-01-20 19.0 0.084449 High 98.803349


A C B
0 2016-01-01 Low NaN
2 2016-01-03 High NaN
5 2016-01-06 High NaN
 

重建索引与其他对象对齐

有时可能希望采取一个对象和重新索引,其轴被标记为与另一个对象相同。 考虑下面的例子来理解这一点。

 

import pandas as pd
import numpy as np

df1 = pd.DataFrame(np.random.randn(10,3),columns=[col1,col2,col3])
df2 = pd.DataFrame(np.random.randn(7,3),columns=[col1,col2,col3])
print(df1)
print(df2)

df1 = df1.reindex_like(df2)                 # 在df1中,把和df2一样的标签行提取出来
print(df1)

输出结果:

 

       col1      col2      col3
0 0.989992 0.543438 -2.311684
1 -0.704759 -0.555589 -0.570049
2 -0.658263 -0.605368 -0.025520
3 1.533949 -0.936191 -0.071094
4 -0.729812 -0.339670 0.468700
5 -0.164076 0.075098 0.654549
6 -0.491034 1.096496 -0.166250
7 0.230918 -1.561643 1.501326
8 0.703623 -0.407445 -0.792633
9 0.340817 -1.132127 -0.695821

col1 col2 col3
0 0.144380 0.295776 -0.743097
1 -1.597853 0.029949 -1.605222
2 0.626728 -0.077997 -0.167353
3 0.466008 0.695279 -0.047752
4 -1.088821 -0.456605 1.192847
5 -0.020330 1.616297 -0.368196
6 -1.038790 -1.264894 0.059060

col1 col2 col3
0 0.989992 0.543438 -2.311684
1 -0.704759 -0.555589 -0.570049
2 -0.658263 -0.605368 -0.025520
3 1.533949 -0.936191 -0.071094
4 -0.729812 -0.339670 0.468700
5 -0.164076 0.075098 0.654549
6 -0.491034 1.096496 -0.166250

注意 - 在这里,df1数据帧(DataFrame)被更改并重新编号,如df2 列名称应该匹配,否则将为整个列标签添加NAN

填充时重新加注

reindex()采用可选参数方法,它是一个填充方法,其值如下:

  • pad/ffill - 向前填充值
  • bfill/backfill - 向后填充值
  • nearest - 从最近的索引值填充
import pandas as pd
import numpy as np

df1 = pd.DataFrame(np.random.randn(6,3),columns=[col1,col2,col3])
df2 = pd.DataFrame(np.random.randn(2,3),columns=[col1,col2,col3])

# Padding NAN‘s
print(df2.reindex_like(df1))
print(
)

# Now Fill the NAN‘s with preceding Values
print ("Data Frame with Forward Fill:")
print (df2.reindex_like(df1,method=‘ffill‘))

输出结果:

         col1        col2       col3
0    1.311620   -0.707176   0.599863
1   -0.423455   -0.700265   1.133371
2         NaN         NaN        NaN
3         NaN         NaN        NaN
4         NaN         NaN        NaN
5         NaN         NaN        NaN

Data Frame with Forward Fill:
         col1        col2        col3
0    1.311620   -0.707176    0.599863
1   -0.423455   -0.700265    1.133371
2   -0.423455   -0.700265    1.133371
3   -0.423455   -0.700265    1.133371
4   -0.423455   -0.700265    1.133371
5   -0.423455   -0.700265    1.133371

注 - 最后四行被填充了。

重建索引时的填充限制

限制参数在重建索引时提供对填充的额外控制。限制指定连续匹配的最大计数。

import pandas as pd
import numpy as np

df1 = pd.DataFrame(np.random.randn(6,3),columns=[col1,col2,col3])
df2 = pd.DataFrame(np.random.randn(2,3),columns=[col1,col2,col3])

# Padding NAN‘s
print(df2.reindex_like(df1))
print(
)

# Now Fill the NAN‘s with preceding Values
print ("Data Frame with Forward Fill limiting to 1:")
print(df2.reindex_like(df1,method=ffill,limit=1))

输出结果:

         col1        col2        col3
0    0.247784    2.128727    0.702576
1   -0.055713   -0.021732   -0.174577
2         NaN         NaN         NaN
3         NaN         NaN         NaN
4         NaN         NaN         NaN
5         NaN         NaN         NaN

Data Frame with Forward Fill limiting to 1:
         col1        col2        col3
0    0.247784    2.128727    0.702576
1   -0.055713   -0.021732   -0.174577
2   -0.055713   -0.021732   -0.174577
3         NaN         NaN         NaN
4         NaN         NaN         NaN
5         NaN         NaN         NaN
 

注意 - 只有第7行由前6行填充。 然后,其它行按原样保留。

重命名

rename()方法允许基于一些映射(字典或者系列)或任意函数来重新标记一个轴。

import pandas as pd
import numpy as np

df1 = pd.DataFrame(np.random.randn(6,3),columns=[col1,col2,col3])
print(df1)
print(
)

print ("After renaming the rows and columns:")
print(df1.rename(columns={col1 : c1, col2 : c2},index = {0 : ‘apple‘, 1 : ‘banana‘, 2 : ‘durian‘}))

输出结果:

         col1        col2        col3
0    0.486791    0.105759    1.540122
1   -0.990237    1.007885   -0.217896
2   -0.483855   -1.645027   -1.194113
3   -0.122316    0.566277   -0.366028
4   -0.231524   -0.721172   -0.112007
5    0.438810    0.000225    0.435479

After renaming the rows and columns:
                c1          c2        col3
apple     0.486791    0.105759    1.540122
banana   -0.990237    1.007885   -0.217896
durian   -0.483855   -1.645027   -1.194113
3        -0.122316    0.566277   -0.366028
4        -0.231524   -0.721172   -0.112007
5         0.438810    0.000225    0.435479
 

rename()方法提供了一个inplace命名参数,默认为False并复制底层数据。 指定传递inplace = True则表示将数据重命名。

以上是关于Pandas | 08 重建索引的主要内容,如果未能解决你的问题,请参考以下文章

有没有办法使元数据无效并从 CDSW 中的 python 代码重建索引?

SQL Server 重建索引与重组索引区别

为啥以及何时需要在 MongoDB 中重建索引?

在 Sql Server 维护计划中重组索引与重建索引

获取数据框 pandas 中日期时间的索引

索引重建任务