博弈论问题

Posted hoyoak

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了博弈论问题相关的知识,希望对你有一定的参考价值。

对钟长者的课堂总结QwQ

 


 

类型一:一人进行一件事回合制游戏(例如取k样东西,走k步)

解题方法:设dp[i][j][k]...(表示状态)表示在此状态是必胜态还是必败态

然后看这个状态可以转移到那几个状态,如果此状态转移到的所有状态均为必胜态

则此状态为必败态,若此状态的所有转移中有一个为必败态,则此状态为必胜态。

例一:有n件物品,Alice和Bob在进行游戏,Alice为先手,对于每回合,Alice和Bob

可以取走2-5件物品,Alice和Bob均使用最优策略,问Alice是必胜还是必败。

设dp[i]表示到第i件物品时是必胜态(true)还是必败态(false)。

由Alice为先手,每回合可以取走2-5件物品可知,dp[1]=false;

dp[2]=dp[3]=dp[4]=dp[5]=true;

然后遍可以从6-n进行O(4*n)的转移,检验dp[i-2],dp[i-3],dp[i-4],dp[i-5]的值,

如果四个值均为true,则说明无论这个时候怎么取,他的对手在下一轮一定是必胜态,

所以这个时候是必败态,如果四个值里面有大于等于1个false,则证明此时可以用最优策略

转移到对手的那轮是必败态,所以这个时候是必胜态。

例二:

类型2:Nim石子游戏

有n堆石子,每堆石子有a[i]个,

lice和Bob在进行游戏,Alice为先手,对于每回合,Alice和Bob可以从某一堆取走任意数量的石子,

谁先将石子取完谁获胜。

Sg定理:因为每堆石子是独立的,所以有一个叫Sg定理的东西。

定义:sg[i]=mex(sg[它能转移到的状态]),mex:最小的没有出现过的自然数。

最后可以得到sg[a[i]]每一堆的sg值,最后必胜必败态即为ans=sg[a[1]]^sg[a[2]]^....^sg[a[n]];

对于Nim石子游戏我们发现,对于第i堆石子的sg值一定为a[i],因为可以取走任意数量的石子嘛,

最后将所有的a[i]异或起来,如果为0,则先手必败,否则先手必胜。

例1:有n+1堆石子,最左边一堆有2012个石子,两个人分别进行操作。一次操作可以选取两

堆不同的石堆,分别增加一个或减少一个石子(一加一减,或给已经不剩石子的堆加一个都是允许的)

为了保证游戏在有限步内结束,规定所选的两堆中右边的那一堆一定要包含奇数个石子,无路可走者输,

问先手是否必胜。

转化为Nim石子游戏问题,

 

以上是关于博弈论问题的主要内容,如果未能解决你的问题,请参考以下文章

博弈论

博弈论——一周目小结

博弈论dp

简单博弈论总结

如何用netlogo模拟博弈论

转博弈论