ID3决策树算法实现(Python版)

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ID3决策树算法实现(Python版)相关的知识,希望对你有一定的参考价值。

  1 # -*- coding:utf-8 -*-
  2 
  3 from numpy import *
  4 import numpy as np
  5 import pandas as pd
  6 from math import log
  7 import operator
  8 
  9 #计算数据集的香农熵
 10 def calcShannonEnt(dataSet):
 11     numEntries=len(dataSet)
 12     labelCounts={}
 13     #给所有可能分类创建字典
 14     for featVec in dataSet:
 15         currentLabel=featVec[-1]
 16         if currentLabel not in labelCounts.keys():
 17             labelCounts[currentLabel]=0
 18         labelCounts[currentLabel]+=1
 19     shannonEnt=0.0
 20     #以2为底数计算香农熵
 21     for key in labelCounts:
 22         prob = float(labelCounts[key])/numEntries
 23         shannonEnt-=prob*log(prob,2)
 24     return shannonEnt
 25 
 26 
 27 #对离散变量划分数据集,取出该特征取值为value的所有样本
 28 def splitDataSet(dataSet,axis,value):
 29     retDataSet=[]
 30     for featVec in dataSet:
 31         if featVec[axis]==value:
 32             reducedFeatVec=featVec[:axis]
 33             reducedFeatVec.extend(featVec[axis+1:])
 34             retDataSet.append(reducedFeatVec)
 35     return retDataSet
 36 
 37 #对连续变量划分数据集,direction规定划分的方向,
 38 #决定是划分出小于value的数据样本还是大于value的数据样本集
 39 def splitContinuousDataSet(dataSet,axis,value,direction):
 40     retDataSet=[]
 41     for featVec in dataSet:
 42         if direction==0:
 43             if featVec[axis]>value:
 44                 reducedFeatVec=featVec[:axis]
 45                 reducedFeatVec.extend(featVec[axis+1:])
 46                 retDataSet.append(reducedFeatVec)
 47         else:
 48             if featVec[axis]<=value:
 49                 reducedFeatVec=featVec[:axis]
 50                 reducedFeatVec.extend(featVec[axis+1:])
 51                 retDataSet.append(reducedFeatVec)
 52     return retDataSet
 53 
 54 #选择最好的数据集划分方式
 55 def chooseBestFeatureToSplit(dataSet,labels):
 56     numFeatures=len(dataSet[0])-1
 57     baseEntropy=calcShannonEnt(dataSet)
 58     bestInfoGain=0.0
 59     bestFeature=-1
 60     bestSplitDict={}
 61     for i in range(numFeatures):
 62         featList=[example[i] for example in dataSet]
 63         #对连续型特征进行处理
 64         if type(featList[0]).__name__==float or type(featList[0]).__name__==int:
 65             #产生n-1个候选划分点
 66             sortfeatList=sorted(featList)
 67             splitList=[]
 68             for j in range(len(sortfeatList)-1):
 69                 splitList.append((sortfeatList[j]+sortfeatList[j+1])/2.0)
 70 
 71             bestSplitEntropy=10000
 72             slen=len(splitList)
 73             #求用第j个候选划分点划分时,得到的信息熵,并记录最佳划分点
 74             for j in range(slen):
 75                 value=splitList[j]
 76                 newEntropy=0.0
 77                 subDataSet0=splitContinuousDataSet(dataSet,i,value,0)
 78                 subDataSet1=splitContinuousDataSet(dataSet,i,value,1)
 79                 prob0=len(subDataSet0)/float(len(dataSet))
 80                 newEntropy+=prob0*calcShannonEnt(subDataSet0)
 81                 prob1=len(subDataSet1)/float(len(dataSet))
 82                 newEntropy+=prob1*calcShannonEnt(subDataSet1)
 83                 if newEntropy<bestSplitEntropy:
 84                     bestSplitEntropy=newEntropy
 85                     bestSplit=j
 86             #用字典记录当前特征的最佳划分点
 87             bestSplitDict[labels[i]]=splitList[bestSplit]
 88             infoGain=baseEntropy-bestSplitEntropy
 89         #对离散型特征进行处理
 90         else:
 91             uniqueVals=set(featList)
 92             newEntropy=0.0
 93             #计算该特征下每种划分的信息熵
 94             for value in uniqueVals:
 95                 subDataSet=splitDataSet(dataSet,i,value)
 96                 prob=len(subDataSet)/float(len(dataSet))
 97                 newEntropy+=prob*calcShannonEnt(subDataSet)
 98             infoGain=baseEntropy-newEntropy
 99         if infoGain>bestInfoGain:
100             bestInfoGain=infoGain
101             bestFeature=i
102     #若当前节点的最佳划分特征为连续特征,则将其以之前记录的划分点为界进行二值化处理
103     #即是否小于等于bestSplitValue
104     if type(dataSet[0][bestFeature]).__name__==float or type(dataSet[0][bestFeature]).__name__==int:
105         bestSplitValue=bestSplitDict[labels[bestFeature]]
106         labels[bestFeature]=labels[bestFeature]+<=+str(bestSplitValue)
107         for i in range(shape(dataSet)[0]):
108             if dataSet[i][bestFeature]<=bestSplitValue:
109                 dataSet[i][bestFeature]=1
110             else:
111                 dataSet[i][bestFeature]=0
112     return bestFeature
113 
114 #特征若已经划分完,节点下的样本还没有统一取值,则需要进行投票
115 def majorityCnt(classList):
116     classCount={}
117     for vote in classList:
118         if vote not in classCount.keys():
119             classCount[vote]=0
120         classCount[vote]+=1
121     return max(classCount)
122 
123 #主程序,递归产生决策树
124 def createTree(dataSet,labels,data_full,labels_full):
125     classList=[example[-1] for example in dataSet]
126     if classList.count(classList[0])==len(classList):
127         return classList[0]
128     if len(dataSet[0])==1:
129         return majorityCnt(classList)
130     bestFeat=chooseBestFeatureToSplit(dataSet,labels)
131     bestFeatLabel=labels[bestFeat]
132     myTree={bestFeatLabel:{}}
133     featValues=[example[bestFeat] for example in dataSet]
134     uniqueVals=set(featValues)
135     if type(dataSet[0][bestFeat]).__name__==str:
136         currentlabel=labels_full.index(labels[bestFeat])
137         featValuesFull=[example[currentlabel] for example in data_full]
138         uniqueValsFull=set(featValuesFull)
139     del(labels[bestFeat])
140     #针对bestFeat的每个取值,划分出一个子树。
141     for value in uniqueVals:
142         subLabels=labels[:]
143         if type(dataSet[0][bestFeat]).__name__==str:
144             uniqueValsFull.remove(value)
145         myTree[bestFeatLabel][value]=createTree(splitDataSet146          (dataSet,bestFeat,value),subLabels,data_full,labels_full)
147     if type(dataSet[0][bestFeat]).__name__==str:
148         for value in uniqueValsFull:
149             myTree[bestFeatLabel][value]=majorityCnt(classList)
150     return myTree
151 
152 import matplotlib.pyplot as plt
153 decisionNode=dict(boxstyle="sawtooth",fc="0.8")
154 leafNode=dict(boxstyle="round4",fc="0.8")
155 arrow_args=dict(arrowstyle="<-")
156 
157 
158 #计算树的叶子节点数量
159 def getNumLeafs(myTree):
160     numLeafs=0
161     firstSides = list(myTree.keys())
162     firstStr=firstSides[0]
163     secondDict=myTree[firstStr]
164     for key in secondDict.keys():
165         if type(secondDict[key]).__name__==dict:
166             numLeafs+=getNumLeafs(secondDict[key])
167         else: numLeafs+=1
168     return numLeafs
169 
170 #计算树的最大深度
171 def getTreeDepth(myTree):
172     maxDepth=0
173     firstSides = list(myTree.keys())
174     firstStr=firstSides[0]
175     secondDict=myTree[firstStr]
176     for key in secondDict.keys():
177         if type(secondDict[key]).__name__==dict:
178             thisDepth=1+getTreeDepth(secondDict[key])
179         else: thisDepth=1
180         if thisDepth>maxDepth:
181             maxDepth=thisDepth
182     return maxDepth
183 
184 #画节点
185 def plotNode(nodeTxt,centerPt,parentPt,nodeType):
186     createPlot.ax1.annotate(nodeTxt,xy=parentPt,xycoords=axes fraction,187     xytext=centerPt,textcoords=axes fraction,va="center", ha="center",188     bbox=nodeType,arrowprops=arrow_args)
189 
190 #画箭头上的文字
191 def plotMidText(cntrPt,parentPt,txtString):
192     lens=len(txtString)
193     xMid=(parentPt[0]+cntrPt[0])/2.0-lens*0.002
194     yMid=(parentPt[1]+cntrPt[1])/2.0
195     createPlot.ax1.text(xMid,yMid,txtString)
196 
197 def plotTree(myTree,parentPt,nodeTxt):
198     numLeafs=getNumLeafs(myTree)
199     depth=getTreeDepth(myTree)
200     firstSides = list(myTree.keys())
201     firstStr=firstSides[0]
202     cntrPt=(plotTree.x0ff+(1.0+float(numLeafs))/2.0/plotTree.totalW,plotTree.y0ff)
203     plotMidText(cntrPt,parentPt,nodeTxt)
204     plotNode(firstStr,cntrPt,parentPt,decisionNode)
205     secondDict=myTree[firstStr]
206     plotTree.y0ff=plotTree.y0ff-1.0/plotTree.totalD
207     for key in secondDict.keys():
208         if type(secondDict[key]).__name__==dict:
209             plotTree(secondDict[key],cntrPt,str(key))
210         else:
211             plotTree.x0ff=plotTree.x0ff+1.0/plotTree.totalW
212             plotNode(secondDict[key],(plotTree.x0ff,plotTree.y0ff),cntrPt,leafNode)
213             plotMidText((plotTree.x0ff,plotTree.y0ff),cntrPt,str(key))
214     plotTree.y0ff=plotTree.y0ff+1.0/plotTree.totalD
215 
216 def createPlot(inTree):
217     fig=plt.figure(1,facecolor=white)
218     fig.clf()
219     axprops=dict(xticks=[],yticks=[])
220     createPlot.ax1=plt.subplot(111,frameon=False,**axprops)
221     plotTree.totalW=float(getNumLeafs(inTree))
222     plotTree.totalD=float(getTreeDepth(inTree))
223     plotTree.x0ff=-0.5/plotTree.totalW
224     plotTree.y0ff=1.0
225     plotTree(inTree,(0.5,1.0),‘‘)
226     plt.show()
227 
228 df=pd.read_csv(watermelon_4_3.csv)
229 data=df.values[:,1:].tolist()
230 data_full=data[:]
231 labels=df.columns.values[1:-1].tolist()
232 labels_full=labels[:]
233 myTree=createTree(data,labels,data_full,labels_full)
234 print(myTree)
235 createPlot(myTree)
最终结果如下:
{‘texture‘: {‘blur‘: 0, ‘little_blur‘: {‘touch‘: {‘soft_stick‘: 1, ‘hard_smooth‘: 0}}, ‘distinct‘: {‘density<=0.38149999999999995‘: {0: 1, 1: 0}}}}
 
得到的决策树如下:
技术分享
 
参考资料:
《机器学习实战》
《机器学习》周志华著

以上是关于ID3决策树算法实现(Python版)的主要内容,如果未能解决你的问题,请参考以下文章

python 使用Id3算法实现决策树

决策树---ID3算法(介绍及Python实现)

Python实现决策树ID3算法

机器学习决策树ID3算法,手把手教你用Python实现

看看如何学习决策树ID3算法,手把手教你用Python实现

看看如何学习决策树ID3算法,手把手教你用Python实现