python协程

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python协程相关的知识,希望对你有一定的参考价值。

Python由于众所周知的GIL的原因,导致其线程无法发挥多核的并行计算能力(当然,后来有了multiprocessing,可以实现多进程并行),显得比较鸡肋。既然在GIL之下,同一时刻只能有一个线程在运行,那么对于CPU密集的程序来说,线程之间的切换开销就成了拖累,而以I/O为瓶颈的程序正是协程所擅长的:

多任务并发(非并行),每个任务在合适的时候挂起(发起I/O)和恢复(I/O结束)

Python中的协程经历了很长的一段发展历程。其大概经历了如下三个阶段:

  1. 最初的生成器变形yield/send
  2. 引入@asyncio.coroutine和yield from
  3. 在最近的Python3.5版本中引入async/await关键字

从yield说起

先看一段普通的计算斐波那契续列的代码:

 

 

如果我们仅仅是需要拿到斐波那契序列的第n位,或者仅仅是希望依此产生斐波那契序列,那么上面这种传统方式就会比较耗费内存。

这时,yield就派上用场了。

 

 

当一个函数中包含yield语句时,python会自动将其识别为一个生成器。这时fib(20)并不会真正调用函数体,而是以函数体生成了一个生成器对象实例。

yield在这里可以保留fib函数的计算现场,暂停fib的计算并将b返回。而将fib放入for…in循环中时,每次循环都会调用next(fib(20)),唤醒生成器,执行到下一个yield语句处,直到抛出StopIteration异常。此异常会被for循环捕获,导致跳出循环。

Send来了

从上面的程序中可以看到,目前只有数据从fib(20)中通过yield流向外面的for循环;如果可以向fib(20)发送数据,那不是就可以在Python中实现协程了嘛。

于是,Python中的生成器有了send函数,yield表达式也拥有了返回值。

我们用这个特性,模拟一个额慢速斐波那契数列的计算:

 

 

其中next(sfib)相当于sfib.send(None),可以使得sfib运行至第一个yield处返回。后续的sfib.send(random.uniform(0, 0.5))则将一个随机的秒数发送给sfib,作为当前中断的yield表达式的返回值。这样,我们可以从“主”程序中控制协程计算斐波那契数列时的思考时间,协程可以返回给“主”程序计算结果,Perfect!

yield from是个什么鬼?

yield from用于重构生成器,简单的,可以这么使用:

 

 

这种使用方式很简单,但远远不是yield from的全部。yield from的作用还体现可以像一个管道一样将send信息传递给内层协程,并且处理好了各种异常情况,因此,对于stupid_fib也可以这样包装和使用:

 

 

如果没有yield from,这里的copy_yield_from将会特别复杂(因为要自己处理各种异常)。

asyncio.coroutine和yield from

yield from在asyncio模块中得以发扬光大。先看示例代码:

 

 

asyncio是一个基于事件循环的实现异步I/O的模块。通过yield from,我们可以将协程asyncio.sleep的控制权交给事件循环,然后挂起当前协程;之后,由事件循环决定何时唤醒asyncio.sleep,接着向后执行代码。

这样说可能比较抽象,好在asyncio是一个由python实现的模块,那么我们来看看asyncio.sleep中都做了些什么:

 

 

首先,sleep创建了一个Future对象,作为更内层的协程对象,通过yield from交给了事件循环;其次,它通过调用事件循环的call_later函数,注册了一个回调函数。

通过查看Future类的源码,可以看到,Future是一个实现了__iter__对象的生成器:

 

 

那么当我们的协程yield from asyncio.sleep时,事件循环其实是与Future对象建立了练习。每次事件循环调用send(None)时,其实都会传递到Future对象的__iter__函数调用;而当Future尚未执行完毕的时候,就会yield self,也就意味着暂时挂起,等待下一次send(None)的唤醒。

当我们包装一个Future对象产生一个Task对象时,在Task对象初始化中,就会调用Future的send(None),并且为Future设置好回调函数。

 

 

预设的时间过后,事件循环将调用Future._set_result_unless_cancelled:

 

 

这将改变Future的状态,同时回调之前设定好的Tasks._wakeup;在_wakeup中,将会再次调用Tasks._step,这时,Future的状态已经标记为完成,因此,将不再yield self,而return语句将会触发一个StopIteration异常,此异常将会被Task._step捕获用于设置Task的结果。同时,整个yield from链条也将被唤醒,协程将继续往下执行。

async和await

弄清楚了asyncio.coroutine和yield from之后,在Python3.5中引入的async和await就不难理解了:可以将他们理解成asyncio.coroutine/yield from的完美替身。当然,从Python设计的角度来说,async/await让协程表面上独立于生成器而存在,将细节都隐藏于asyncio模块之下,语法更清晰明了。

 

 

总结

至此,Python中的协程就介绍完毕了。示例程序中都是以sleep为异步I/O的代表,在实际项目中,可以使用协程异步的读写网络、读写文件、渲染界面等,而在等待协程完成的同时,CPU还可以进行其他的计算。协程的作用正在于此。

以上是关于python协程的主要内容,如果未能解决你的问题,请参考以下文章

Python与协程从Python2—Python3

Python协程之asyncio

python协程

python协程

Python 协程

Python3 协程相关