安装python caffe过程中遇到的一些问题以及对应的解决方案

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了安装python caffe过程中遇到的一些问题以及对应的解决方案相关的知识,希望对你有一定的参考价值。

关于系统环境:

  • Ubuntu 16.04 LTS
  • cuda 8.0
  • cudnn 6.5
  • Anaconda3

编译pycaffe之前需要配置文件Makefile.config

  1 ## Refer to http://caffe.berkeleyvision.org/installation.html
  2 # Contributions simplifying and improving our build system are welcome!
  3 
  4 # cuDNN acceleration switch (uncomment to build with cuDNN).
  5 USE_CUDNN := 1
  6 
  7 # CPU-only switch (uncomment to build without GPU support).
  8 # CPU_ONLY := 1
  9 
 10 # uncomment to disable IO dependencies and corresponding data layers
 11 # USE_OPENCV := 0
 12 # USE_LEVELDB := 0
 13 # USE_LMDB := 0
 14 
 15 # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
 16 #    You should not set this flag if you will be reading LMDBs with any
 17 #    possibility of simultaneous read and write
 18 # ALLOW_LMDB_NOLOCK := 1
 19 
 20 # Uncomment if youre using OpenCV 3
 21 # OPENCV_VERSION := 3
 22 
 23 # To customize your choice of compiler, uncomment and set the following.
 24 # N.B. the default for Linux is g++ and the default for OSX is clang++
 25 # CUSTOM_CXX := g++
 26 
 27 # CUDA directory contains bin/ and lib/ directories that we need.
 28 CUDA_DIR := /usr/local/cuda
 29 # On Ubuntu 14.04, if cuda tools are installed via
 30 # "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
 31 # CUDA_DIR := /usr
 32 
 33 # CUDA architecture setting: going with all of them.
 34 # For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
 35 # For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
 36 CUDA_ARCH := -gencode arch=compute_20,code=sm_20  37         -gencode arch=compute_20,code=sm_21  38         -gencode arch=compute_30,code=sm_30  39         -gencode arch=compute_35,code=sm_35  40         -gencode arch=compute_50,code=sm_50  41         -gencode arch=compute_52,code=sm_52  42         -gencode arch=compute_60,code=sm_60  43         -gencode arch=compute_61,code=sm_61  44         -gencode arch=compute_61,code=compute_61
 45 
 46 # BLAS choice:
 47 # atlas for ATLAS (default)
 48 # mkl for MKL
 49 # open for OpenBlas
 50 BLAS := atlas
 51 # Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
 52 # Leave commented to accept the defaults for your choice of BLAS
 53 # (which should work)!
 54 # BLAS_INCLUDE := /path/to/your/blas
 55 # BLAS_LIB := /path/to/your/blas
 56 
 57 # Homebrew puts openblas in a directory that is not on the standard search path
 58 # BLAS_INCLUDE := $(shell brew --prefix openblas)/include
 59 # BLAS_LIB := $(shell brew --prefix openblas)/lib
 60 
 61 # This is required only if you will compile the matlab interface.
 62 # MATLAB directory should contain the mex binary in /bin.
 63 # MATLAB_DIR := /usr/local
 64 # MATLAB_DIR := /Applications/MATLAB_R2012b.app
 65 
 66 # NOTE: this is required only if you will compile the python interface.
 67 # We need to be able to find Python.h and numpy/arrayobject.h.
 68 # PYTHON_INCLUDE := /usr/include/python2.7  69 #        /usr/lib/python2.7/dist-packages/numpy/core/include
 70 # Anaconda Python distribution is quite popular. Include path:
 71 # Verify anaconda location, sometimes its in root.
 72  ANACONDA_HOME := /home/ipc/anaconda3
 73 # PYTHON_INCLUDE := $(ANACONDA_HOME)/include  74 #         $(ANACONDA_HOME)/include/python3.6m  75 #         $(ANACONDA_HOME)/lib/python3.6/site-packages/numpy/core/include
 76 # 关键点1:根据自己的情况设置好ANACONDA的路径
77 # Uncomment to use Python 3 (default is Python 2) 78 PYTHON_LIBRARIES := boost_python3 python3.6m 79 PYTHON_INCLUDE := $(ANACONDA_HOME)/include $(ANACONDA_HOME)/include/python3.6m $(ANACONDA_HOME)/lib/python3.6/site-packages/numpy/core/include 80 # 关键点2:需要注意其中的版本号,原始文件是3.5的,但是我的anaconda是3.6的,因此如果直接uncomment,就会出现问题,需要根据自己的情况设置好
81 # We need to be able to find libpythonX.X.so or .dylib. 82 # PYTHON_LIB := /usr/lib 83 PYTHON_LIB := $(ANACONDA_HOME)/lib 84 85 # Homebrew installs numpy in a non standard path (keg only) 86 # PYTHON_INCLUDE += $(dir $(shell python -c import numpy.core; print(numpy.core.__file__)))/include 87 # PYTHON_LIB += $(shell brew --prefix numpy)/lib 88 89 # Uncomment to support layers written in Python (will link against Python libs) 90 WITH_PYTHON_LAYER := 1 91 92 # Whatever else you find you need goes here. 93 INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/lib/x86_64-linux-gnu/hdf5/serial/include /usr/local/cuda/include 94 LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial /usr/local/cuda/lib64 95 96 # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies 97 # INCLUDE_DIRS += $(shell brew --prefix)/include 98 # LIBRARY_DIRS += $(shell brew --prefix)/lib 99 100 # NCCL acceleration switch (uncomment to build with NCCL) 101 # https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0) 102 # USE_NCCL := 1 103 104 # Uncomment to use `pkg-config` to specify OpenCV library paths. 105 # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.) 106 # USE_PKG_CONFIG := 1 107 108 # N.B. both build and distribute dirs are cleared on `make clean` 109 BUILD_DIR := build 110 DISTRIBUTE_DIR := distribute 111 112 # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171 113 # DEBUG := 1 114 115 # The ID of the GPU that make runtest will use to run unit tests. 116 TEST_GPUID := 0 117 118 # enable pretty build (comment to see full commands) 119 Q ?= @

 

  1. 如上方式配置文件Makefile.config(路径问题)
    • 可避免Python.h 和 numpy/arrayobject.h文件找不到的问题
  2. cannot find -lboost_python3的问题(版本问题)(参考 http://blog.csdn.net/u012675539/article/details/51351553)
    • 检查是否有文件存在: ls /usr/lib/x86_64-linux-gnu/libboost_python-py35.so
    • 建立软链接:sudo ln -s libboost_python-py35.so libboost_python3.so
  3. libstdc++.so.6: version ‘GLIBCXX_3.4.20‘ not found的问题 (版本问题)
    • conda install libgcc
  4. No module named ‘google‘的问题 (版本问题)
    • conda install protobuf

 

上述即为在安装pycaffe过程中所踩过的坑!

 






以上是关于安装python caffe过程中遇到的一些问题以及对应的解决方案的主要内容,如果未能解决你的问题,请参考以下文章

ubuntu 14.04: caffe2 的安装,pycharm的配置, anaconda的使用

安装caffe时遇到的各种问题

记录在MAC上安装caffe

Caffe初学者第一部:Ubuntu14.04上安装caffe(CPU)+Python的详细过程 (亲测成功, 20180524更新)

重新安装caffe遇到的一些错误

ModuleNotFoundError:没有名为'caffe'的模块