python进行机器学习之模型选择与构建
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python进行机器学习之模型选择与构建相关的知识,希望对你有一定的参考价值。
Scikit-Learn库已经实现了所有基本机器学习的算法,可以直接调用里面库进行模型构建。
一、逻辑回归
大多数情况下被用来解决分类问题(二元分类),但多类的分类(所谓的一对多方法)也适用。这个算法的优点是对于每一个输出的对象都有一个对应类别的概率。
from sklearn import metrics
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X, y)
print(model)
# make predictions
expected = y
predicted = model.predict(X)
# summarize the fit of the model
print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted))
二、朴素贝叶斯
它也是最有名的机器学习的算法之一,它的主要任务是恢复训练样本的数据分布密度。这个方法通常在多类的分类问题上表现的很好。
from sklearn import metrics
from sklearn.naive_bayes import GaussianNB
model = GaussianNB()
model.fit(X, y)
print(model)
# make predictions
expected = y
predicted = model.predict(X)
# summarize the fit of the model
print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted))
三、k-最近邻
kNN(k-最近邻)方法通常用于一个更复杂分类算法的一部分。例如,我们可以用它的估计值做为一个对象的特征。有时候,一个简单的kNN算法在良好选择的特征上会有很出色的表现。当参数(主要是metrics)被设置得当,这个算法在回归问题中通常表现出最好的质量。
from sklearn import metrics
from sklearn.neighbors import KNeighborsClassifier
# fit a k-nearest neighbor model to the data
model = KNeighborsClassifier()
model.fit(X, y)
print(model)
# make predictions
expected = y
predicted = model.predict(X)
# summarize the fit of the model
print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted))
四、决策树
分类和回归树(CART)经常被用于这么一类问题,在这类问题中对象有可分类的特征且被用于回归和分类问题。决策树很适用于多类分类。
from sklearn import metrics
from sklearn.tree import DecisionTreeClassifier
# fit a CART model to the data
model = DecisionTreeClassifier()
model.fit(X, y)
print(model)
# make predictions
expected = y
predicted = model.predict(X)
# summarize the fit of the model
print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted))
五、支持向量机
SVM(支持向量机)是最流行的机器学习算法之一,它主要用于分类问题。同样也用于逻辑回归,SVM在一对多方法的帮助下可以实现多类分类。
from sklearn import metrics
from sklearn.svm import SVC
# fit a SVM model to the data
model = SVC()
model.fit(X, y)
print(model)
# make predictions
expected = y
predicted = model.predict(X)
# summarize the fit of the model
print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted))
除了分类和回归问题,Scikit-Learn还有海量的更复杂的算法,包括了聚类, 以及建立混合算法的实现技术,如Bagging和Boosting。
以上是关于python进行机器学习之模型选择与构建的主要内容,如果未能解决你的问题,请参考以下文章