Atcoder Regular Contest ARC 153 A B C D 题解
Posted LegendStane
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Atcoder Regular Contest ARC 153 A B C D 题解相关的知识,希望对你有一定的参考价值。
A - AABCDDEFE
一个beautiful number是形如这样的:\\(S1S1S3S4S5S5S7S8S7\\)。如果选定了\\(S1\\),后面的数有100000种选法,所以先求出答案的\\(S1\\)。假设现在我们要求出以\\(S1\\)开头的第\\(n\\)小的beautiful number。发现这个条件其实等价于\\(S3S4S5S7S8\\)这个五位数等于\\(n-1\\),所以直接求即可。
点击查看代码
#include <bits/stdc++.h>
#define rep(i,n) for(int i=0;i<n;++i)
#define repn(i,n) for(int i=1;i<=n;++i)
#define LL long long
#define pii pair <int,int>
#define fi first
#define se second
#define mpr make_pair
#define pb push_back
void fileio()
#ifdef LGS
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
void termin()
#ifdef LGS
std::cout<<"\\n\\nEXECUTION TERMINATED";
#endif
exit(0);
using namespace std;
int n,ans[20];
int main()
fileio();
cin>>n;
int s1=1;
while(n>100000)
++s1;
n-=100000;
--n;
ans[1]=ans[2]=s1;
ans[8]=n%10;n/=10;
ans[7]=ans[9]=n%10;n/=10;
ans[5]=ans[6]=n%10;n/=10;
ans[4]=n%10;n/=10;
ans[3]=n%10;
repn(i,9) cout<<ans[i];
termin();
B - Grid Rotations
发现行和列实际上是独立的,每次操作\\(a,b\\)实际上我们相当于依次做了这四步:把第\\(1\\cdots a\\)行翻转(注意是行与行之间的顺序reverse,不是把每行的内容reverse,后面的"翻转"同理);把第\\(a+1\\cdots n\\)行翻转;把第\\(1\\cdots b\\)列翻转;把第\\(b+1\\cdots m\\)列翻转。如果我们能求出两个数组\\(r,c\\),\\(r_i\\)表示所有操作做完后,原来的第\\(i\\)行被移到了第\\(r_i\\)行,第\\(j\\)列被移到了第\\(c_j\\)列,那么原来的\\(a_i,j\\)就被移动到了\\((r_i,c_j)\\)。用两个平衡树维护两维的翻转情况即可。
时间复杂度单log。
其实也可以线性,因为行列坐标的变换也可以看成是加一个数再取模。但平衡树的优势是不要动脑子。
点击查看代码
#include <bits/stdc++.h>
#define rep(i,n) for(int i=0;i<n;++i)
#define repn(i,n) for(int i=1;i<=n;++i)
#define LL long long
#define pii pair <int,int>
#define fi first
#define se second
#define mpr make_pair
#define pb push_back
void fileio()
#ifdef LGS
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
void termin()
#ifdef LGS
std::cout<<"\\n\\nEXECUTION TERMINATED";
#endif
exit(0);
using namespace std;
int to[2][500010];
mt19937 rndtr(114514);
struct nodeint val,key,ls,rs,sz,tag;;
struct tr
int len;
node a[1000000];
int newNode(int x)a[++len].val=x;a[len].key=rndtr();a[len].ls=a[len].rs=a[len].tag=0;a[len].sz=1;return len;
void addTag(int x)
if(x==0) return;
swap(a[x].ls,a[x].rs);a[x].tag^=1;
void pushDown(int x)
if(x==0||a[x].tag==0) return;
addTag(a[x].ls);addTag(a[x].rs);
a[x].tag=0;
void calc(int x)if(x==0) return;a[x].sz=a[a[x].ls].sz+1+a[a[x].rs].sz;
int merge(int x,int y)
if(x==0||y==0) return max(x,y);
pushDown(x);pushDown(y);
int ret;
if(a[x].key<=a[y].key)ret=x;a[ret].rs=merge(a[ret].rs,y);
elseret=y;a[ret].ls=merge(x,a[ret].ls);
calc(ret);return ret;
pii splitSz(int x,int y)//左边y个
if(x==0) return mpr(0,0);if(y==0) return mpr(0,x);if(y==a[x].sz) return mpr(x,0);
pushDown(x);
int ret1,ret2;
if(a[a[x].ls].sz>=y)pii p=splitSz(a[x].ls,y);ret1=p.fi;ret2=x;a[ret2].ls=p.se;
elsepii p=splitSz(a[x].rs,y-1-a[a[x].ls].sz);ret1=x;a[ret1].rs=p.fi;ret2=p.se;
calc(ret1);calc(ret2);return mpr(ret1,ret2);
void build(int x,int frt,int w)
if(x==0) return;
to[w][a[x].val]=frt+a[a[x].ls].sz;
pushDown(x);
build(a[x].ls,frt,w);build(a[x].rs,frt+a[a[x].ls].sz+1,w);
row,col;
int n,m;
string a[500010],ans[500010];
char c[500010];
int main()
fileio();
cin>>n>>m;
rep(i,n)
scanf("%s",c);
a[i]=ans[i]=c;
row.len=0;col.len=0;
int rootr=0,rootc=0;
rep(i,n) rootr=row.merge(rootr,row.newNode(i));
rep(i,m) rootc=col.merge(rootc,col.newNode(i));
int q;cin>>q;
rep(qn,q)
int x,y;
scanf("%d%d",&x,&y);
pii p=row.splitSz(rootr,x);
row.addTag(p.fi);row.addTag(p.se);
rootr=row.merge(p.fi,p.se);
p=col.splitSz(rootc,y);
col.addTag(p.fi);col.addTag(p.se);
rootc=col.merge(p.fi,p.se);
row.build(rootr,0,0);
col.build(rootc,0,1);
rep(i,n) rep(j,m) ans[to[0][i]][to[1][j]]=a[i][j];
rep(i,n) printf("%s\\n",ans[i].c_str());
termin();
C - ± Increasing Sequence
(A数组的下标从0开始)
令\\(suf_i=\\sum_j=i^n-1a_i\\)。我们其实是要找出一个序列\\(b_0\\cdots b_n-1\\),满足\\(b_1\\cdots b_n-1\\)都是正整数,且\\(\\sum b_isuf_i=0\\)。其实b就是题目中x的差分数组。
由于b中除了第一个数都要取正数,那就先把\\(b_1\\cdots b_n-1\\)都取1,\\(b_0\\)取0,后面如果需要可以再加。如果此时\\(\\sum b_isuf_i\\)已经为0,那就直接输出解。否则,如果\\(suf_1\\cdots suf_n-1\\)中有正有负,那肯定有解,因为\\(suf_n-1\\)是1或-1,如果是1的话就随便找一个\\(<0\\)的\\(suf_i\\),不断给\\(b_i\\)加1直到\\(\\sum b_isuf_i\\le 0\\),然后再用\\(suf_n-1\\)加回来即可。\\(suf_n-1=-1\\)同理。
剩下的情况,如果\\(suf_0=0\\)肯定无解,这是显然的。否则也肯定有解,比如\\(suf_n-1=1\\)时,可以像上面一样,先用\\(suf_0\\)把\\(\\sum b_isuf_i\\)压到非正数,在用\\(suf_n-1\\)加回来。
点击查看代码
#include <bits/stdc++.h>
#define rep(i,n) for(int i=0;i<n;++i)
#define repn(i,n) for(int i=1;i<=n;++i)
#define LL long long
#define pii pair <int,int>
#define fi first
#define se second
#define mpr make_pair
#define pb push_back
void fileio()
#ifdef LGS
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
void termin()
#ifdef LGS
std::cout<<"\\n\\nEXECUTION TERMINATED";
#endif
exit(0);
using namespace std;
LL n,a[200010],ans[200010],sufsum[200010];
void print()
puts("Yes");
rep(i,n)
printf("%d ",ans[i]);
ans[i+1]+=ans[i];
puts("");
termin();
void fuck()puts("No");termin();
int main()
fileio();
cin>>n;
rep(i,n) scanf("%lld",&a[i]);
LL sum=0,cur=0,posi=-1,nega=-1;
for(int i=n-1;i>0;--i)
sum+=a[i];sufsum[i]=sum;
ans[i]=1;cur+=sum;
if(sum>0) posi=i;else if(sum<0) nega=i;
if(cur==0) print();
//if(a[n-1]==1) posi=n-1;else nega=n-1;
if(posi>-1&&nega>-1)
if(a[n-1]==1)
LL usenega=(max(0LL,cur)-sufsum[nega]-1)/(-sufsum[nega]);
ans[nega]+=usenega;cur+=usenega*sufsum[nega];
ans[n-1]-=cur;
else
LL useposi=(-min(0LL,cur)+sufsum[posi]-1)/sufsum[posi];
ans[posi]+=useposi;cur+=useposi*sufsum[posi];
ans[n-1]+=cur;
print();
if(sum+a[0]==0) fuck();
sum+=a[0];
if(a[n-1]==1)
LL targ=(cur+llabs(sum)-1)/llabs(sum)*llabs(sum);
ans[n-1]+=targ-cur;
ans[0]=-(targ/sum);
else
LL targ=(-cur+llabs(sum)-1)/llabs(sum)*llabs(sum);targ=-targ;
ans[n-1]+=llabs(targ-cur);
ans[0]=-(targ/sum);
print();
termin();
D - Sum of Sum of Digits
看起来像数位dp,其实也确实是dp。
令原数组所有数的数位和为\\(S\\),x的数位和为X。那么最终的数位和为\\(S+nX-所有数加x的总进位次数\\cdot 9\\),这个模拟一下加法的过程就能发现。我们把进位次数\\(\\cdot 9-nX\\)称为"收益",我们想让收益最大。
我们从低往高确定x的每一位。关键观察:当确定了x的最低的i位时,\\(a\\)数组中那些会从第i位到第i+1位进一位的数,肯定是\\(a\\)中前i位按照数值比较最大的一些数。所以就可以dp了:\\(dp_i,j\\)表示计算到第i位,前\\(i-1\\)位最大的j个数被第\\(i-1\\)位到第\\(i\\)位进位了一次的情况下的最大收益。转移时枚举x的当前这一位选什么,计算第i位到第i+1位的进位数只要用前缀和预处理一下就行了。
时间复杂度\\(O(10^2n)\\)。
点击查看代码
#include <bits/stdc++.h>
#define rep(i,n) for(int i=0;i<n;++i)
#define repn(i,n) for(int i=1;i<=n;++i)
#define LL long long
#define pii pair <int,int>
#define fi first
#define se second
#define mpr make_pair
#define pb push_back
void fileio()
#ifdef LGS
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
void termin()
#ifdef LGS
std::cout<<"\\n\\nEXECUTION TERMINATED";
#endif
exit(0);
using namespace std;
void chmax(LL &x,LL y)if(x<y) x=y;
LL n,a[200010],pw10[15],clue[200010],lft[200010],ord[20][200010];
LL pref[15][200010][15];//pref[i][j][k]: 第i层,前缀最大的j个中,当前位>=k的个数
LL dp[15][200010];//dp[i][j]: 第i层,前缀最大的j个被进位的最大收益
int main()
fileio();
pw10[0]=1;repn(i,12) pw10[i]=pw10[i-1]*10;
cin>>n;
rep(i,n) scanf("%lld",&a[i]);
rep(i,10)
rep(j,n) clue[j]=a[j]%pw10[i],lft[j]=a[j]/pw10[i]%10,ord[i][j]=j;
sort(ord[i],ord[i]+n,[](LL x,LL y)return clue[x]>clue[y];);
rep(j,n)
rep(k,12) pref[i][j+1][k]=pref[i][j][k];
for(int k=0;k<=lft[ord[i][j]];++k) ++pref[i][j+1][k];
rep(i,14) rep(j,n+3) dp[i][j]=-1e18;
dp[0][0]=0;
rep(i,10) rep(j,n+1) if(dp[i][j]>-1e18)
rep(nxt,10)
LL gain=(LL)(-nxt)*n,add=pref[i][j][10-nxt-1]+pref[i][n][10-nxt]-pref[i][j][10-nxt];
gain+=add*9;
chmax(dp[i+1][add],dp[i][j]+gain);
LL ans=-1e18;
rep(j,n+1) ans=max(ans,dp[10][j]);
LL ori=0;
rep(i,n)
while(a[i]>0)
ori+=a[i]%10;
a[i]/=10;
ans=ori-ans;
cout<<ans<<endl;
termin();
以上是关于Atcoder Regular Contest ARC 153 A B C D 题解的主要内容,如果未能解决你的问题,请参考以下文章
[Atcoder Regular Contest 060] Tutorial