Codeforces 1630 E Making It Bipartite 题解 (Dilworth定理)

Posted LegendStane

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Codeforces 1630 E Making It Bipartite 题解 (Dilworth定理)相关的知识,希望对你有一定的参考价值。

题目链接

首先可以想到把题目中的那张图G建出来,由于要求这张图是二分图,把它复制一遍(\\(G\\to G\'\\)),然后对于每个u,连一条无向边\\(u-u\'\\),这样就变成了最大独立集问题。但是一般图最大独立集是没有多项式复杂度的做法的,所以不行。

考虑先把这张图看成有向图,也就是如果\\(a_i|a_j\\),就连一条有向边\\(i\\to j\\),令连出的图为G。由于所有\\(a_i\\)不相同,且\\(a_i\\)的大小与n一个数量级,所以这张图边数是\\(O(nlogn)\\)级别的。注意到这个图中如果\\(i\\to j,j\\to k\\),那么一定有\\(i\\to k\\),这样就产生了三元环,不合法了。观察发现这个图合法的充要条件是:不存在同时有入边和出边的点,也就是一个点要么是入点只有入度,要么是出点只有出度。必要性显然,因为不能让长度为3的环存在;充分性:一个长度为奇数的简单环中肯定有一个同时有入度和出度的点,把这种点ban掉之后就肯定没有奇环了。

然后还是跟之前的方法一样,把图复制一遍(\\(G\\to G\'\\),也就是拆点),然后对于每个u,连一条向边\\(u\\to u\'\\),令最终的图为H。显然这个图是个DAG。这题的答案其实是这个DAG的最长反链的长度。先看求法,再说证明。

关于最长反链见Dilworth定理

根据Dilworth定理,最长反链长度=最小链覆盖的大小。注意这里的链覆盖是可以重合的,也就是一个点可以被多条链涉及。不能重合的链覆盖的求法,上面的链接里有。能重合的情况,需要先求这个图的传递闭包,也就是如果\\(i\\to j,j\\to k\\)就必须加上\\(i\\to k\\)这条边,做完这个变换后再跟不能重合的情况一样做就行了。这题中这个图的传递闭包是很好求的,如果\\(G\\)中有一条边\\(u\\to v\\),就在H中加一条\\(u\\to v\'\\)的边,发现此时H就满足要求了,并且边数仍是\\(O(nlogn)\\)级别。

正确性证明:在最长反链中,\\(u和u\'\\)显然只有最多一个被选,因为u和u\'之间有一条边。令选u表示这个点没有出度(B类点),选u\'表示这个点没有入度(A类点),都不选表示这个点被删除。我们不能接受一个点已经是A类却还有没被删除的点到它有边,或者是一个点已经是B类却还到没被删除的点有边,这也是我们唯一的要求。画一下图就会发现"选出的点两两之间没有路径"与这个要求等价。

最小链覆盖是转化成二分图匹配来跑的,Dinic跑匹配的复杂度是\\(O(\\sqrt n m)\\),所以总时间复杂度\\(O(nlogn\\sqrt n)\\)

这题一共经历了这些转化:无向图\\(\\to\\)有向图\\(\\to\\)不存在同时有入边和出边的点\\(\\to\\)最长反链长度\\(\\to\\)最小链覆盖大小\\(\\to\\)二分图匹配

点击查看代码
#include <bits/stdc++.h>

#define rep(i,n) for(int i=0;i<n;++i)
#define repn(i,n) for(int i=1;i<=n;++i)
#define LL long long
#define pii pair <int,int>
#define fi first
#define se second
#define mpr make_pair
#define pb push_back

void fileio()

  #ifdef LGS
  freopen("in.txt","r",stdin);
  freopen("out.txt","w",stdout);
  #endif

void termin()

  #ifdef LGS
  std::cout<<"\\n\\nEXECUTION TERMINATED";
  #endif
  exit(0);


using namespace std;

struct node

	LL to,flow,rev;
	node(LL a,LL b,LL c):to(a),flow(b),rev(c)
;
namespace maxFlow

	LL n,dist[200010],cur[200010];
	vector <node> g[200010];
	queue <LL> q;
	void add_edge(LL x,LL y,LL z)
	
		g[x].pb(node(y,z,g[y].size()));
		g[y].pb(node(x,0,g[x].size()-1));
	
	void bfs(LL s)
	
		rep(i,n+5) dist[i]=-1;
		dist[s]=0;q.push(s);
		while(!q.empty())
		
			int f=q.front();q.pop();
			rep(i,g[f].size())
			
				if(dist[g[f][i].to]!=-1||g[f][i].flow==0) continue;
				dist[g[f][i].to]=dist[f]+1;
				q.push(g[f][i].to);
			
		
	
	LL dfs(LL pos,LL t,LL flow)
	
		if(pos==t) return flow;
		for(int i=cur[pos];i<g[pos].size();++i,++cur[pos])
		
			if(g[pos][i].flow==0||dist[g[pos][i].to]!=dist[pos]+1) continue;
			LL flow2=dfs(g[pos][i].to,t,min(flow,g[pos][i].flow));
			if(flow2>0)
			
				g[pos][i].flow-=flow2;
				g[g[pos][i].to][g[pos][i].rev].flow+=flow2;
				return flow2;
			
		
		return 0;
	
	LL max_flow(LL s,LL t)
	
		LL ret=0;
		while(true)
		
			bfs(s);
			if(dist[t]==-1) return ret;
			rep(i,n+5) cur[i]=0;
			while(true)
			
				LL add=dfs(s,t,1e12);
				if(add==0) break;
				ret+=add;
			
		
	


int t,n,a[50010];
vector <pii> oe,e;

int main()

  fileio();

  cin>>t;
  rep(tn,t)
  
    scanf("%d",&n);
    repn(i,n) scanf("%d",&a[i]);
    oe.clear();
    map <int,int> mp;
    repn(i,n) mp[a[i]]=i;
    repn(i,n) for(int j=a[i]+a[i];j<=50000;j+=a[i]) if(mp.find(j)!=mp.end()) oe.pb(mpr(i,mp[j]));
    e.clear();
    rep(i,oe.size()) e.pb(oe[i]),e.pb(mpr(oe[i].fi+n,oe[i].se+n)),e.pb(mpr(oe[i].fi,oe[i].se+n));
    repn(i,n) e.pb(mpr(i,i+n));
    rep(i,maxFlow::n+3) maxFlow::g[i].clear();
    maxFlow::n=n*4+2;
    rep(i,e.size()) maxFlow::add_edge(e[i].fi,e[i].se+n+n,1);
    int ss=n*4+1,tt=n*4+2;
    repn(i,n*2)
    
      maxFlow::add_edge(ss,i,1);
      maxFlow::add_edge(i+n*2,tt,1);
    
    int ans=maxFlow::max_flow(ss,tt);
    printf("%d\\n",n-(n*2-ans));
  

  termin();

以上是关于Codeforces 1630 E Making It Bipartite 题解 (Dilworth定理)的主要内容,如果未能解决你的问题,请参考以下文章

Codeforces Round #588 (Div. 2) E. Kamil and Making a Stream(DFS)

CodeForces - 1525A Potion-making

codeforces 638B—— Making Genome in Berland——————类似拓扑排序

Codeforces Round #754 (Div. 2)E 待写

Codeforces 1229B Kamil and Making a Stream

codeforces 656 E Out of Controls Floyd