Flink批处理-简单案例-01

Posted 黑水滴

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Flink批处理-简单案例-01相关的知识,希望对你有一定的参考价值。

一、简单案例

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>com.robots</groupId>
    <artifactId>robots-flink</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <encoding>UTF-8</encoding>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <maven.compiler.source>1.8</maven.compiler.source>
        <maven.compiler.target>1.8</maven.compiler.target>
        <java.version>1.8</java.version>
        <scala.version>2.12</scala.version>
        <flink.version>1.13.1</flink.version>
    </properties>


    <dependencies>
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <version>1.18.16</version>
        </dependency>

        <!--flink客户端-->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_$scala.version</artifactId>
            <version>$flink.version</version>
        </dependency>

        <!--scala版本-->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-scala_$scala.version</artifactId>
            <version>$flink.version</version>
        </dependency>
        <!--java版本-->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>$flink.version</version>
        </dependency>

        <!--streaming的scala版本-->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-scala_$scala.version</artifactId>
            <version>$flink.version</version>
        </dependency>
        <!--streaming的java版本-->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_$scala.version</artifactId>
            <version>$flink.version</version>
        </dependency>



        <!--日志输出-->
        <dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-log4j12</artifactId>
            <version>1.7.7</version>
            <scope>runtime</scope>
        </dependency>
        <dependency>
            <groupId>log4j</groupId>
            <artifactId>log4j</artifactId>
            <version>1.2.17</version>
            <scope>runtime</scope>
        </dependency>

        <!--json依赖包-->
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>1.2.44</version>
        </dependency>
    </dependencies>

</project>

二、简单批处理代码

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;

/**
 * @datetime 2022-03-09 上午9:47
 * @desc FLink批处理测试案例
 * @menu
 */
public class FlinkBatch01App 

    public static void main(String[] args) throws Exception 
        //构建执行任务环境以及任务的启动的入口, 存储全局相关的参数
        ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
        //设置并行度,方便看到效果
        env.setParallelism(1);
        //相同类型元素的数据流 source
        //FLink1.12之后流批一体,不再使用DataSet了
        DataSet<String> stringDS = env.fromElements("java,SpringBoot", "spring cloud,redis",
                                                    "kafka,课堂");
        stringDS.print("处理前");
        DataSet<String> flatMapDS = stringDS.flatMap(new FlatMapFunction<String, String>() 
            @Override
            public void flatMap(String value, Collector<String> collector) throws Exception 
                String [] arr =  value.split(",");
                for(String str : arr)
                    collector.collect(str);
                
            
        );
        //输出 sink
        flatMapDS.print("处理后");

        //DataStream需要调用execute,可以取个名称
        env.execute("flat map job");
    

 

以上是关于Flink批处理-简单案例-01的主要内容,如果未能解决你的问题,请参考以下文章

[2] Flink大数据流式处理利剑: 用Flink进行统计的一个简单例子

Flink流处理之迭代案例

Flink-使用flink处理函数以及状态编程实现TopN案例

Flink基础入门(含案例)

从0到1Flink的成长之路-Flink Action 综合案例

从0到1Flink的成长之路-Flink Action 综合案例