Flink批处理-简单案例-01
Posted 黑水滴
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Flink批处理-简单案例-01相关的知识,希望对你有一定的参考价值。
一、简单案例
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.robots</groupId>
<artifactId>robots-flink</artifactId>
<version>1.0-SNAPSHOT</version>
<properties>
<encoding>UTF-8</encoding>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
<java.version>1.8</java.version>
<scala.version>2.12</scala.version>
<flink.version>1.13.1</flink.version>
</properties>
<dependencies>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.16</version>
</dependency>
<!--flink客户端-->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients_$scala.version</artifactId>
<version>$flink.version</version>
</dependency>
<!--scala版本-->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-scala_$scala.version</artifactId>
<version>$flink.version</version>
</dependency>
<!--java版本-->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>$flink.version</version>
</dependency>
<!--streaming的scala版本-->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-scala_$scala.version</artifactId>
<version>$flink.version</version>
</dependency>
<!--streaming的java版本-->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_$scala.version</artifactId>
<version>$flink.version</version>
</dependency>
<!--日志输出-->
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
<version>1.7.7</version>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.17</version>
<scope>runtime</scope>
</dependency>
<!--json依赖包-->
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>1.2.44</version>
</dependency>
</dependencies>
</project>
二、简单批处理代码
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;
/**
* @datetime 2022-03-09 上午9:47
* @desc FLink批处理测试案例
* @menu
*/
public class FlinkBatch01App
public static void main(String[] args) throws Exception
//构建执行任务环境以及任务的启动的入口, 存储全局相关的参数
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
//设置并行度,方便看到效果
env.setParallelism(1);
//相同类型元素的数据流 source
//FLink1.12之后流批一体,不再使用DataSet了
DataSet<String> stringDS = env.fromElements("java,SpringBoot", "spring cloud,redis",
"kafka,课堂");
stringDS.print("处理前");
DataSet<String> flatMapDS = stringDS.flatMap(new FlatMapFunction<String, String>()
@Override
public void flatMap(String value, Collector<String> collector) throws Exception
String [] arr = value.split(",");
for(String str : arr)
collector.collect(str);
);
//输出 sink
flatMapDS.print("处理后");
//DataStream需要调用execute,可以取个名称
env.execute("flat map job");
以上是关于Flink批处理-简单案例-01的主要内容,如果未能解决你的问题,请参考以下文章
[2] Flink大数据流式处理利剑: 用Flink进行统计的一个简单例子
Flink-使用flink处理函数以及状态编程实现TopN案例