等待队列填充python多处理的最佳方法

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了等待队列填充python多处理的最佳方法相关的知识,希望对你有一定的参考价值。

这是我第一次认真对待并行计算。我在python中使用multiprocessing模块,我遇到了这个问题:

队列使用者在不同的进程中运行,然后运行队列生成器,前者应该等待后者完成其作业,然后再停止迭代队列。有时消费者比生产者更快,队列保持空白。如果我没有提出任何条件,程序将不会停止。

在示例代码中,我使用通配符PRODUCER_IS_OVER来举例说明我需要的内容。

以下代码草绘问题:

def save_data(save_que, file_):
    ### Coroutine instantiation
    PRODUCER_IS_OVER = False
    empty = False
    ### Queue consumer
    while not(empty and PRODUCER_IS_OVER):
        try:
            data = save_que.get()
            print("saving data",data)
        except:
            empty = save_que.empty()
            print(empty)
            pass
        #PRODUCER_IS_OVER = get_condition()
    print ("All data saved")
    return

def get_condition():
    ###NameError: global name 'PRODUCER_IS_OVER' is not defined
    if PRODUCER_IS_OVER:
        return True
    else:
        return False


def produce_data(save_que):
    for _ in range(5):
        time.sleep(random.randint(1,5))
        data = random.randint(1,10)
        print("sending data", data)
        save_que.put(data)

### Main function here
import random
import time
from multiprocessing import Queue, Manager, Process
manager = Manager()
save_que = manager.Queue()
file_ = "file"
save_p    = Process(target= save_data, args=(save_que, file_))
save_p.start()
PRODUCER_IS_OVER = False
produce_data(save_que)
PRODUCER_IS_OVER = True
save_p.join()

produce_data需要可变时间,我希望在填充队列之前启动save_p进程,以便在填充时使用队列。我认为有办法解决何时停止迭代,但我想知道是否存在一种正确的方法来实现它。我尝试了multiprocessing.Pipe和.Lock,但我不知道如何正确有效地实现。

解决:这是最好的方式吗?

下面的代码在Q中实现STOPMESSAGE,工作正常,我可以用类QMsg对它进行优化,以防语言只支持静态类型。

def save_data(save_que, file_):
    # Coroutine instantiation
    PRODUCER_IS_OVER = False
    empty = False
    # Queue consumer
    while not(empty and PRODUCER_IS_OVER):
        data = save_que.get()
        empty = save_que.empty()
        print("saving data", data)
        if data == "STOP":
            PRODUCER_IS_OVER = True
    print("All data saved")
    return


def get_condition():
    # NameError: global name 'PRODUCER_IS_OVER' is not defined
    if PRODUCER_IS_OVER:
        return True
    else:
        return False


def produce_data(save_que):
    for _ in range(5):
        time.sleep(random.randint(1, 5))
        data = random.randint(1, 10)
        print("sending data", data)
        save_que.put(data)
    save_que.put("STOP")


# Main function here
import random
import time
from multiprocessing import Queue, Manager, Process
manager = Manager()
save_que = manager.Queue()
file_ = "file"
save_p = Process(target=save_data, args=(save_que, file_))
save_p.start()
PRODUCER_IS_OVER = False
produce_data(save_que)
PRODUCER_IS_OVER = True
save_p.join()

但是,如果队列是由几个独立的进程生成的,那么这不起作用:在这种情况下谁将发送ALT消息?

另一种解决方案是将进程索引存储在列表中并执行:

def some_alive():
    for p in processes:
        if p.is_alive():
            return True
    return False

但是multiprocessing仅在父进程中支持.is_alive方法,这在我的情况下是有限的。

谢谢

答案

您要求的是queue.get的默认行为。它将等待(阻止)直到队列中的项目可用。发送哨兵值确实是结束子进程的首选方式。

您的方案可以简化为:

import random
import time
from multiprocessing import Manager, Process


def save_data(save_que, file_):
    for data in iter(save_que.get, 'STOP'):
        print("saving data", data)
    print("All data saved")
    return


def produce_data(save_que):
    for _ in range(5):
        time.sleep(random.randint(1, 5))
        data = random.randint(1, 10)
        print("sending data", data)
        save_que.put(data)
    save_que.put("STOP")


if __name__ == '__main__':

    manager = Manager()
    save_que = manager.Queue()
    file_ = "file"
    save_p = Process(target=save_data, args=(save_que, file_))
    save_p.start()
    produce_data(save_que)
    save_p.join()

编辑以回答评论中的问题:

如果cue被几个不同的代理访问并且每个代理都有一个随机时间来完成其任务,我该如何实现stop消息?

它没有太大的不同,您必须尽可能多地将哨兵值放入队列中。

一个实用程序函数,它返回一个streamlogger以查看该操作的位置:

def get_stream_logger(level=logging.DEBUG):
    """Return logger with configured StreamHandler."""
    stream_logger = logging.getLogger('stream_logger')
    stream_logger.handlers = []
    stream_logger.setLevel(level)
    sh = logging.StreamHandler()
    sh.setLevel(level)
    fmt = '[%(asctime)s %(levelname)-8s %(processName)s] --- %(message)s'
    formatter = logging.Formatter(fmt)
    sh.setFormatter(formatter)
    stream_logger.addHandler(sh)

    return stream_logger

多个消费者的代码:

import random
import time
from multiprocessing import Manager, Process
import logging

def save_data(save_que, file_):
    stream_logger = get_stream_logger()
    for data in iter(save_que.get, 'STOP'):
        time.sleep(random.randint(1, 5))  # random delay
        stream_logger.debug(f"saving: {data}")  # DEBUG
    stream_logger.debug("all data saved")  # DEBUG
    return


def produce_data(save_que, n_workers):
    stream_logger = get_stream_logger()
    for _ in range(5):
        time.sleep(random.randint(1, 5))
        data = random.randint(1, 10)
        stream_logger.debug(f"producing: {data}")  # DEBUG
        save_que.put(data)

    for _ in range(n_workers):
        save_que.put("STOP")


if __name__ == '__main__':

    file_ = "file"
    n_processes = 2

    manager = Manager()
    save_que = manager.Queue()

    processes = []
    for _ in range(n_processes):
        processes.append(Process(target=save_data, args=(save_que, file_)))

    for p in processes:
        p.start()

    produce_data(save_que, n_workers=n_processes)

    for p in processes:
        p.join()

示例输出:

[2018-09-02 20:10:35,885 DEBUG    MainProcess] --- producing: 2
[2018-09-02 20:10:38,887 DEBUG    MainProcess] --- producing: 8
[2018-09-02 20:10:38,887 DEBUG    Process-2] --- saving: 2
[2018-09-02 20:10:39,889 DEBUG    MainProcess] --- producing: 8
[2018-09-02 20:10:40,889 DEBUG    Process-3] --- saving: 8
[2018-09-02 20:10:40,890 DEBUG    Process-2] --- saving: 8
[2018-09-02 20:10:42,890 DEBUG    MainProcess] --- producing: 1
[2018-09-02 20:10:43,891 DEBUG    Process-3] --- saving: 1
[2018-09-02 20:10:46,893 DEBUG    MainProcess] --- producing: 5
[2018-09-02 20:10:46,894 DEBUG    Process-3] --- all data saved
[2018-09-02 20:10:50,895 DEBUG    Process-2] --- saving: 5
[2018-09-02 20:10:50,896 DEBUG    Process-2] --- all data saved

Process finished with exit code 0

以上是关于等待队列填充python多处理的最佳方法的主要内容,如果未能解决你的问题,请参考以下文章

清空多处理队列的最佳方法

在一些片段之间填充对象变量的最佳方法

使用多处理从队列中读取

Python 多处理:如何启动相互依赖的进程?

充值,提现功能涉及的多线程队列问题

Python 队列queue与多线程组合(生产者+消费者模式)