Python - reshape,pivot,unstack - multiindex

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python - reshape,pivot,unstack - multiindex相关的知识,希望对你有一定的参考价值。

我有一个下面的数据框,我试图重塑。我已经查找了如何做到这一点,但我得到了多个答案,并且在尝试将错误实现为具有重复索引时,或者我只获得1个宽行数据帧。我一直在尝试的选项是unstack,pivot和ravel。如果没有迭代行,重塑最好和最简单的方法是什么,我知道我可以解决,但我也知道有更好的方法。

为了清楚起见,我提供了一个屏幕截图,展示了我拥有的内容以及我正在尝试做的事情:

这就是我所拥有的(但有数千行)

enter image description here

我正在尝试将具有相同Customer,W​​eek和Type的行下移到1行上:

enter image description here

看起来像这样:

enter image description here

编辑:如下所述,只是一个快速的数据集样本。我应该从一开始就提供。

import pandas as pd

d = {'Customer': ['Store_A']*12,
 'Class': ['1A','1A','2B','2B','3C','3C']*2,
 'Week':['08/19/2018','08/26/2018']*6, 
 'Type':['Food']*6 + ['Beverage']*6, 
 'Value': [None,None,1,1.5,1.1,1.2,None,None,0.96,0.70,0.96,0.96]}

test_df = pd.DataFrame(data=d)
答案

你可以避免在pandas中重复的列名,所以我建议为它添加计数器:

g = test_df.groupby(['Customer','Week', 'Type']).cumcount().astype(str)

df = test_df.set_index(['Customer','Week', 'Type', g]).unstack().sort_index(axis=1, level=1)
df.columns = df.columns.map('_'.join)

df = df.reset_index()
print (df)
  Customer        Week      Type Class_0  Value_0 Class_1  Value_1 Class_2  
0  Store_A  08/19/2018  Beverage      1A      NaN      2B     0.96      3C   
1  Store_A  08/19/2018      Food      1A      NaN      2B     1.00      3C   
2  Store_A  08/26/2018  Beverage      1A      NaN      2B     0.70      3C   
3  Store_A  08/26/2018      Food      1A      NaN      2B     1.50      3C   

   Value_2  
0     0.96  
1     1.10  
2     0.96  
3     1.20  

以上是关于Python - reshape,pivot,unstack - multiindex的主要内容,如果未能解决你的问题,请参考以下文章

stack,unstack,groupby,pivot_table的区别

Python的reshape的用法

python中函数 reshape(-1,1)

python reshape(-1,1)

重塑和轴向旋转

python基础之numpy.reshape详解