如何在Python中实现二进制搜索树?

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了如何在Python中实现二进制搜索树?相关的知识,希望对你有一定的参考价值。

这是我到目前为止所得到的但它不起作用:

class Node:
    rChild,lChild,data = None,None,None

    def __init__(self,key):
        self.rChild = None
        self.lChild = None
        self.data = key

class Tree:
    root,size = None,0
    def __init__(self):
        self.root = None
        self.size = 0

    def insert(self,node,someNumber):
        if node is None:
            node = Node(someNumber)
        else:
            if node.data > someNumber:
                self.insert(node.rchild,someNumber)
            else:
                self.insert(node.rchild, someNumber)
        return

def main():
    t = Tree()
    t.root = Node(4)
    t.root.rchild = Node(5)
    print t.root.data #this works
    print t.root.rchild.data #this works too
    t = Tree()
    t.insert(t.root,4)
    t.insert(t.root,5)
    print t.root.data #this fails
    print t.root.rchild.data #this fails too

if __name__ == '__main__':
     main()
答案

以下是二进制插入的快速示例:

class Node:
    def __init__(self, val):
        self.l_child = None
        self.r_child = None
        self.data = val

def binary_insert(root, node):
    if root is None:
        root = node
    else:
        if root.data > node.data:
            if root.l_child is None:
                root.l_child = node
            else:
                binary_insert(root.l_child, node)
        else:
            if root.r_child is None:
                root.r_child = node
            else:
                binary_insert(root.r_child, node)

def in_order_print(root):
    if not root:
        return
    in_order_print(root.l_child)
    print root.data
    in_order_print(root.r_child)

def pre_order_print(root):
    if not root:
        return        
    print root.data
    pre_order_print(root.l_child)
    pre_order_print(root.r_child)    

r = Node(3)
binary_insert(r, Node(7))
binary_insert(r, Node(1))
binary_insert(r, Node(5))

     3
    / 
   1   7
      /
     5

print "in order:"
in_order_print(r)

print "pre order"
pre_order_print(r)

in order:
1
3
5
7
pre order
3
1
7
5
另一答案

它易于使用两个类实现BST,1。节点和2.树树类仅用于用户界面,实际方法将在Node类中实现。

class Node():

    def __init__(self,val):
        self.value = val
        self.left = None
        self.right = None


    def _insert(self,data):
        if data == self.value:
            return False
        elif data < self.value:
            if self.left:
                return self.left._insert(data)
            else:
                self.left = Node(data)
                return True
        else:
            if self.right:
                return self.right._insert(data)
            else:
                self.right = Node(data)
                return True

    def _inorder(self):
        if self:
            if self.left:
                self.left._inorder()
            print(self.value)
            if self.right:
                self.right._inorder()



class Tree():

    def __init__(self):
        self.root = None

    def insert(self,data):
        if self.root:
            return self.root._insert(data)
        else:
            self.root = Node(data)
            return True
    def inorder(self):
        if self.root is not None:
            return self.root._inorder()
        else:
            return False




if __name__=="__main__":
    a = Tree()
    a.insert(16)
    a.insert(8)
    a.insert(24)
    a.insert(6)
    a.insert(12)
    a.insert(19)
    a.insert(29)
    a.inorder()

用于检查BST是否正确实现的顺序功能。

另一答案

下面的代码是关于@DDing的答案的基础,以及我从类中学到的东西,它使用while循环来插入(在代码中指出)。

class Node:
    def __init__(self, val):
        self.l_child = None
        self.r_child = None
        self.data = val


def binary_insert(root, node):
    y = None
    x = root
    z = node
    #while loop here
    while x is not None:
        y = x
        if z.data < x.data:
            x = x.l_child
        else:
            x = x.r_child
    z.parent = y
    if y == None:
        root = z
    elif z.data < y.data:
        y.l_child = z
    else:
        y.r_child = z


def in_order_print(root):
    if not root:
        return
    in_order_print(root.l_child)
    print(root.data)
    in_order_print(root.r_child)


r = Node(3)
binary_insert(r, Node(7))
binary_insert(r, Node(1))
binary_insert(r, Node(5))

in_order_print(r)
另一答案

这是一个有效的解决方案。

class BST:
    def __init__(self,data):
        self.root = data
        self.left = None
        self.right = None

    def insert(self,data):
        if self.root == None:
            self.root = BST(data)
        elif data > self.root:
            if self.right == None:
                self.right = BST(data)
            else:
                self.right.insert(data)
        elif data < self.root:
            if self.left == None:
                self.left = BST(data)
            else:
                self.left.insert(data)

    def inordertraversal(self):
        if self.left != None:
            self.left.inordertraversal()
        print (self.root),
        if self.right != None:
            self.right.inordertraversal()

t = BST(4)
t.insert(1)
t.insert(7)
t.insert(3)
t.insert(6)
t.insert(2)
t.insert(5)
t.inordertraversal()
另一答案

接受的答案忽略了为插入的每个节点设置父属性,否则无法实现successor方法,该方法在O(h)时间内在有序树遍历中找到后继,其中h是树的高度(如反对步行所需的O(n)时间。

这是一个基于Cormen等人,算法导论中给出的伪代码的实现,包括分配parent属性和successor方法:

class Node(object):
    def __init__(self, key):
        self.key = key
        self.left = None
        self.right = None
        self.parent = None


class Tree(object):
    def __init__(self, root=None):
        self.root = root

    def insert(self, z):
        y = None
        x = self.root
        while x is not None:
            y = x
            if z.key < x.key:
                x = x.left
            else:
                x = x.right
        z.parent = y
        if y is None:
            self.root = z       # Tree was empty
        elif z.key < y.key:
            y.left = z
        else:
            y.right = z

    @staticmethod
    def minimum(x):
        while x.left is not None:
            x = x.left
        return x

    @staticmethod
    def successor(x):
        if x.right is not None:
            return Tree.minimum(x.right)
        y = x.parent
        while y is not None and x == y.right:
            x = y
            y = y.parent
        return y

以下是一些测试,表明树的行为符合DTing给出的示例:

import pytest

@pytest.fixture
def tree():
    t = Tree()
    t.insert(Node(3))
    t.insert(Node(1))
    t.insert(Node(7))
    t.insert(Node(5))
    return t

def test_tree_insert(tree):
    assert tree.root.key == 3
    assert tree.root.left.key == 1
    assert tree.root.right.key == 7
    assert tree.root.right.left.key == 5

def test_tree_successor(tree):
    assert Tree.successor(tree.root.left).key == 3
    assert Tree.successor(tree.root.right.left).key == 7

if __name__ == "__main__":
    pytest.main([__file__])
另一答案

问题或代码中至少有一个问题在于: -

def insert(self,node,someNumber):
    if node is None:
        node = Node(someNumber)
    else:
        if node.data > someNumber:
            self.insert(node.rchild,someNumber)
        else:
            self.insert(node.rchild, someNumber)
    return

您会看到语句“if node.data> someNumber:”和关联的“else:”语句后面都有相同的代码。即if语句是真还是假,你做同样的事情。

我建议你可能打算在这里做不同的事情,也许其中一个应该说self.insert(node.lchild,someNumber)?

另一答案

另一个Python BST解决方案

class Node(object):
    def __init__(self, value):
        self.left_node = None
        self.right_node = None
        self.value = value

    def __str__(self):
        return "[%s, %s, %s]" % (self.left_node, self.value, self.right_node)

    def insertValue(self, new_value):
        """
        1. if current Node doesnt have value then assign to self
        2. new_value lower than current Node's value then go left
        2. new_value greater than current Node's value then go right
        :return:
        """
        if self.value:
            if new_value < self.value:
                # add to left
                if self.left_node is None:  # reached start add value to start
                    self.left_node = Node(new_value)
                else:
                    self.left_node.insertValue(new_value)  # search
            elif new_value > self.value:
                # add to right
            

以上是关于如何在Python中实现二进制搜索树?的主要内容,如果未能解决你的问题,请参考以下文章

如何在bash终端中实现CTRL-R(反向搜索)?

`@geodist` 如何在 Sphinx 中实现排序/搜索?

如何显示(输出)在二进制搜索树中查找值所需的迭代次数?

用于在C中为二叉搜索树分配内存的分段错误

从片段中获取意图值后,我如何在 recyclerview 项目中实现单击

如何使用对象列表在片段中实现newinstace模式[重复]