python Mean Squared Error vs. Structural Similarity Measure两种算法的图片比较
Posted java渣渣
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python Mean Squared Error vs. Structural Similarity Measure两种算法的图片比较相关的知识,希望对你有一定的参考价值。
# by movie on 2019/12/18 import matplotlib.pyplot as plt import numpy as np from skimage import measure import cv2 # import the necessary packages def mse(imageA, imageB): # the ‘Mean Squared Error‘ between the two images is the # sum of the squared difference between the two images; # NOTE: the two images must have the same dimension err = np.sum((imageA.astype("float") - imageB.astype("float")) ** 2) err /= float(imageA.shape[0] * imageA.shape[1]) # return the MSE, the lower the error, the more "similar" # the two images are return err def compare_images(imageA, imageB, title): # compute the mean squared error and structural similarity # index for the images m = mse(imageA, imageB) s = measure.compare_ssim(imageA, imageB) # setup the figure fig = plt.figure(title) plt.suptitle("MSE: %.2f, SSIM: %.2f" % (m, s)) # show first image ax = fig.add_subplot(1, 2, 1) plt.imshow(imageA, cmap=plt.cm.gray) plt.axis("off") # show the second image ax = fig.add_subplot(1, 2, 2) plt.imshow(imageB, cmap=plt.cm.gray) plt.axis("off") # show the images plt.show() # load the images -- the original, the original + contrast, # and the original + photoshop original = cv2.imread("images/trumpA689.jpg") contrast = cv2.imread("images/trumpA690.jpg") shopped = cv2.imread("images/trumpA748.jpg") # convert the images to grayscale original = cv2.cvtColor(original, cv2.COLOR_BGR2GRAY) contrast = cv2.cvtColor(contrast, cv2.COLOR_BGR2GRAY) shopped = cv2.cvtColor(shopped, cv2.COLOR_BGR2GRAY) # initialize the figure fig = plt.figure("Images") images = ("Original", original), ("Contrast", contrast), ("Photoshopped", shopped) # loop over the images for (i, (name, image)) in enumerate(images): # show the image ax = fig.add_subplot(1, 3, i + 1) ax.set_title(name) plt.imshow(image, cmap=plt.cm.gray) plt.axis("off") # show the figure plt.show() # compare the images compare_images(original, original, "Original vs. Original") compare_images(original, contrast, "Original vs. Contrast") compare_images(original, shopped, "Original vs. Photoshopped")
参考:https://www.pyimagesearch.com/2014/09/15/python-compare-two-images/
以上是关于python Mean Squared Error vs. Structural Similarity Measure两种算法的图片比较的主要内容,如果未能解决你的问题,请参考以下文章
sklearn.metrics.mean_squared_error 越大越好(否定)吗?
输入包含 NaN、无穷大或值太大.. 使用 gridsearchcv 时,评分 = 'neg_mean_squared_log_error'