python hough变换检测直线的实现方法 - python

Posted txdah

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python hough变换检测直线的实现方法 - python相关的知识,希望对你有一定的参考价值。

文章来源:嗨学网 敏而好学论坛www.piaodoo.com 欢迎大家相互学习

1 原理

技术图片

 2 检测步骤

将参数空间(ρ,θ) 量化成m*n(m为ρ的等份数,n为θ的等份数)个单元,并设置累加器矩阵,初始值为0;

对图像边界上的每一个点(x,y)带入ρ=xcosθ+ysinθ,求得每个θ对应的ρ值,并在ρ和θ所对应的单元,将累加器加1,即:Q(i,j)=Q(i,j)+1;

检验参数空间中每个累加器的值,累加器最大的单元所对应的ρ和θ即为直角坐标系中直线方程的参数。

 3 接口

技术图片

image:二值图像,canny边缘检测输出。这里是result。
rho: 以像素为单位的距离精度,这里为1像素。如果想要检测的线段更多,可以设为0.1。
theta: 以弧度为单位的角度精度,这里为numpy.pi/180。如果想要检测的线段更多,可以设为0.01 * numpy.pi/180。
threshod: 阈值参数,int类型,超过设定阈值才被检测出线段,这里为10。
minLineLength:线段以像素为单位的最小长度。
maxLineGap:同一方向上两条线段判定为一条线段的最大允许间隔。

4 代码及结果

import os
import numpy as np
import cv2
from PIL import Image, ImageEnhance
import math
 
 
def img_processing(img):
  # 灰度化
  gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
  ret, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_OTSU)
  # canny边缘检测
  edges = cv2.Canny(binary, 50, 150, apertureSize=3)
  return edges
 
 
def line_detect(img):
  img = Image.open(img)
  img = ImageEnhance.Contrast(img).enhance(3)
  # img.show()
  img = np.array(img)
  result = img_processing(img)
  # 霍夫线检测
  lines = cv2.HoughLinesP(result, 1, 1 * np.pi/180, 10, minLineLength=10, maxLineGap=5)
  # print(lines)
  print("Line Num : ", len(lines))
 
  # 画出检测的线段
  for line in lines:
    for x1, y1, x2, y2 in line:
      cv2.line(img, (x1, y1), (x2, y2), (255, 0, 0), 1)
    pass
  img = Image.fromarray(img, ‘RGB‘)
  img.show()
 
 
if __name__ == "__main__":
  line_detect("1.jpg")
  pass

原图如下:

技术图片

检测结果:

技术图片

技术图片

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

原文地址是:http://www.piaodoo.com/thread-13549-1-17.html 蜜桃成熟时www.eplbx.com131www.buzc.org学习之外可赏心悦目有助更好地学习!非常好

以上是关于python hough变换检测直线的实现方法 - python的主要内容,如果未能解决你的问题,请参考以下文章

Python OpenCV 霍夫(Hough Transform)直线变换检测原理,图像处理第 33 篇博客

图像中的线检测——hough变换

图像中的线检测——hough变换

HoughLinesP(霍夫变换直线检测)

hough变换检测直线

车道线识别基于matlab hough变换道路检测直线检测含Matlab源码 2074期