python detect.py
Posted 2008nmj
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python detect.py相关的知识,希望对你有一定的参考价值。
python detect.py
import argparse from sys import platform from models import * # set ONNX_EXPORT in models.py from utils.datasets import * from utils.utils import * def detect(save_txt=False, save_img=False): img_size = (320, 192) if ONNX_EXPORT else opt.img_size # (320, 192) or (416, 256) or (608, 352) for (height, width) out, source, weights, half, view_img = opt.output, opt.source, opt.weights, opt.half, opt.view_img webcam = source == \'0\' or source.startswith(\'rtsp\') or source.startswith(\'http\') or source.endswith(\'.txt\') # Initialize device = torch_utils.select_device(device=\'cpu\' if ONNX_EXPORT else opt.device) if os.path.exists(out): shutil.rmtree(out) # delete output folder os.makedirs(out) # make new output folder # Initialize model model = Darknet(opt.cfg, img_size) # Load weights attempt_download(weights) if weights.endswith(\'.pt\'): # pytorch format model.load_state_dict(torch.load(weights, map_location=device)[\'model\']) else: # darknet format _ = load_darknet_weights(model, weights) # Second-stage classifier classify = False if classify: modelc = torch_utils.load_classifier(name=\'resnet101\', n=2) # initialize modelc.load_state_dict(torch.load(\'weights/resnet101.pt\', map_location=device)[\'model\']) # load weights modelc.to(device).eval() # Fuse Conv2d + BatchNorm2d layers # model.fuse() # Eval mode model.to(device).eval() # Export mode if ONNX_EXPORT: img = torch.zeros((1, 3) + img_size) # (1, 3, 320, 192) torch.onnx.export(model, img, \'weights/export.onnx\', verbose=False, opset_version=10) # Validate exported model import onnx model = onnx.load(\'weights/export.onnx\') # Load the ONNX model onnx.checker.check_model(model) # Check that the IR is well formed print(onnx.helper.printable_graph(model.graph)) # Print a human readable representation of the graph return # Half precision half = half and device.type != \'cpu\' # half precision only supported on CUDA if half: model.half() # Set Dataloader vid_path, vid_writer = None, None if webcam: view_img = True torch.backends.cudnn.benchmark = True # set True to speed up constant image size inference dataset = LoadStreams(source, img_size=img_size, half=half) else: save_img = True dataset = LoadImages(source, img_size=img_size, half=half) # Get classes and colors classes = load_classes(parse_data_cfg(opt.data)[\'names\']) colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(classes))] # Run inference t0 = time.time() for path, img, im0s, vid_cap in dataset: t = time.time() # Get detections img = torch.from_numpy(img).to(device) if img.ndimension() == 3: img = img.unsqueeze(0) pred = model(img)[0] if opt.half: pred = pred.float() # Apply NMS pred = non_max_suppression(pred, opt.conf_thres, opt.nms_thres) # Apply if classify: pred = apply_classifier(pred, modelc, img, im0s) # Process detections for i, det in enumerate(pred): # detections per image if webcam: # batch_size >= 1 p, s, im0 = path[i], \'%g: \' % i, im0s[i] else: p, s, im0 = path, \'\', im0s save_path = str(Path(out) / Path(p).name) s += \'%gx%g \' % img.shape[2:] # print string if det is not None and len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class s += \'%g %ss, \' % (n, classes[int(c)]) # add to string # Write results for *xyxy, conf, _, cls in det: if save_txt: # Write to file with open(save_path + \'.txt\', \'a\') as file: file.write((\'%g \' * 6 + \'\\n\') % (*xyxy, cls, conf)) if save_img or view_img: # Add bbox to image label = \'%s %.2f\' % (classes[int(cls)], conf) plot_one_box(xyxy, im0, label=label, color=colors[int(cls)]) print(\'%sDone. (%.3fs)\' % (s, time.time() - t)) # Stream results if view_img: cv2.imshow(p, im0) # Save results (image with detections) if save_img: if dataset.mode == \'images\': cv2.imwrite(save_path, im0) else: if vid_path != save_path: # new video vid_path = save_path if isinstance(vid_writer, cv2.VideoWriter): vid_writer.release() # release previous video writer fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h)) vid_writer.write(im0) if save_txt or save_img: print(\'Results saved to %s\' % os.getcwd() + os.sep + out) if platform == \'darwin\': # MacOS os.system(\'open \' + out + \' \' + save_path) print(\'Done. (%.3fs)\' % (time.time() - t0)) if __name__ == \'__main__\': parser = argparse.ArgumentParser() parser.add_argument(\'--cfg\', type=str, default=\'cfg/yolov3-spp.cfg\', help=\'cfg file path\') parser.add_argument(\'--data\', type=str, default=\'data/coco.data\', help=\'coco.data file path\') parser.add_argument(\'--weights\', type=str, default=\'weights/yolov3-spp.weights\', help=\'path to weights file\') parser.add_argument(\'--source\', type=str, default=\'data/samples\', help=\'source\') # input file/folder, 0 for webcam parser.add_argument(\'--output\', type=str, default=\'output\', help=\'output folder\') # output folder parser.add_argument(\'--img-size\', type=int, default=416, help=\'inference size (pixels)\') parser.add_argument(\'--conf-thres\', type=float, default=0.3, help=\'object confidence threshold\') parser.add_argument(\'--nms-thres\', type=float, default=0.5, help=\'iou threshold for non-maximum suppression\') parser.add_argument(\'--fourcc\', type=str, default=\'mp4v\', help=\'output video codec (verify ffmpeg support)\') parser.add_argument(\'--half\', action=\'store_true\', help=\'half precision FP16 inference\') parser.add_argument(\'--device\', default=\'\', help=\'device id (i.e. 0 or 0,1) or cpu\') parser.add_argument(\'--view-img\', action=\'store_true\', help=\'display results\') opt = parser.parse_args() print(opt) with torch.no_grad(): detect()
以上是关于python detect.py的主要内容,如果未能解决你的问题,请参考以下文章
魔改并封装 YoloV5 Version7 的 detect.py 成 API接口以供 python 程序使用
[YOLO专题-26]:YOLO V5 - ultralytics代码解析-detect.py程序的流程图与对应的plantUML源码