python detect.py

Posted 2008nmj

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python detect.py相关的知识,希望对你有一定的参考价值。

python detect.py

import argparse
from sys import platform

from models import *  # set ONNX_EXPORT in models.py
from utils.datasets import *
from utils.utils import *


def detect(save_txt=False, save_img=False):
    img_size = (320, 192) if ONNX_EXPORT else opt.img_size  # (320, 192) or (416, 256) or (608, 352) for (height, width)
    out, source, weights, half, view_img = opt.output, opt.source, opt.weights, opt.half, opt.view_img
    webcam = source == \'0\' or source.startswith(\'rtsp\') or source.startswith(\'http\') or source.endswith(\'.txt\')

    # Initialize
    device = torch_utils.select_device(device=\'cpu\' if ONNX_EXPORT else opt.device)
    if os.path.exists(out):
        shutil.rmtree(out)  # delete output folder
    os.makedirs(out)  # make new output folder

    # Initialize model
    model = Darknet(opt.cfg, img_size)

    # Load weights
    attempt_download(weights)
    if weights.endswith(\'.pt\'):  # pytorch format
        model.load_state_dict(torch.load(weights, map_location=device)[\'model\'])
    else:  # darknet format
        _ = load_darknet_weights(model, weights)

    # Second-stage classifier
    classify = False
    if classify:
        modelc = torch_utils.load_classifier(name=\'resnet101\', n=2)  # initialize
        modelc.load_state_dict(torch.load(\'weights/resnet101.pt\', map_location=device)[\'model\'])  # load weights
        modelc.to(device).eval()

    # Fuse Conv2d + BatchNorm2d layers
    # model.fuse()

    # Eval mode
    model.to(device).eval()

    # Export mode
    if ONNX_EXPORT:
        img = torch.zeros((1, 3) + img_size)  # (1, 3, 320, 192)
        torch.onnx.export(model, img, \'weights/export.onnx\', verbose=False, opset_version=10)

        # Validate exported model
        import onnx
        model = onnx.load(\'weights/export.onnx\')  # Load the ONNX model
        onnx.checker.check_model(model)  # Check that the IR is well formed
        print(onnx.helper.printable_graph(model.graph))  # Print a human readable representation of the graph
        return

    # Half precision
    half = half and device.type != \'cpu\'  # half precision only supported on CUDA
    if half:
        model.half()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        torch.backends.cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=img_size, half=half)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=img_size, half=half)

    # Get classes and colors
    classes = load_classes(parse_data_cfg(opt.data)[\'names\'])
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(classes))]

    # Run inference
    t0 = time.time()
    for path, img, im0s, vid_cap in dataset:
        t = time.time()

        # Get detections
        img = torch.from_numpy(img).to(device)
        if img.ndimension() == 3:
            img = img.unsqueeze(0)
        pred = model(img)[0]

        if opt.half:
            pred = pred.float()

        # Apply NMS
        pred = non_max_suppression(pred, opt.conf_thres, opt.nms_thres)

        # Apply
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0 = path[i], \'%g: \' % i, im0s[i]
            else:
                p, s, im0 = path, \'\', im0s

            save_path = str(Path(out) / Path(p).name)
            s += \'%gx%g \' % img.shape[2:]  # print string
            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += \'%g %ss, \' % (n, classes[int(c)])  # add to string

                # Write results
                for *xyxy, conf, _, cls in det:
                    if save_txt:  # Write to file
                        with open(save_path + \'.txt\', \'a\') as file:
                            file.write((\'%g \' * 6 + \'\\n\') % (*xyxy, cls, conf))

                    if save_img or view_img:  # Add bbox to image
                        label = \'%s %.2f\' % (classes[int(cls)], conf)
                        plot_one_box(xyxy, im0, label=label, color=colors[int(cls)])

            print(\'%sDone. (%.3fs)\' % (s, time.time() - t))

            # Stream results
            if view_img:
                cv2.imshow(p, im0)

            # Save results (image with detections)
            if save_img:
                if dataset.mode == \'images\':
                    cv2.imwrite(save_path, im0)
                else:
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release()  # release previous video writer

                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        print(\'Results saved to %s\' % os.getcwd() + os.sep + out)
        if platform == \'darwin\':  # MacOS
            os.system(\'open \' + out + \' \' + save_path)

    print(\'Done. (%.3fs)\' % (time.time() - t0))


if __name__ == \'__main__\':
    parser = argparse.ArgumentParser()
    parser.add_argument(\'--cfg\', type=str, default=\'cfg/yolov3-spp.cfg\', help=\'cfg file path\')
    parser.add_argument(\'--data\', type=str, default=\'data/coco.data\', help=\'coco.data file path\')
    parser.add_argument(\'--weights\', type=str, default=\'weights/yolov3-spp.weights\', help=\'path to weights file\')
    parser.add_argument(\'--source\', type=str, default=\'data/samples\', help=\'source\')  # input file/folder, 0 for webcam
    parser.add_argument(\'--output\', type=str, default=\'output\', help=\'output folder\')  # output folder
    parser.add_argument(\'--img-size\', type=int, default=416, help=\'inference size (pixels)\')
    parser.add_argument(\'--conf-thres\', type=float, default=0.3, help=\'object confidence threshold\')
    parser.add_argument(\'--nms-thres\', type=float, default=0.5, help=\'iou threshold for non-maximum suppression\')
    parser.add_argument(\'--fourcc\', type=str, default=\'mp4v\', help=\'output video codec (verify ffmpeg support)\')
    parser.add_argument(\'--half\', action=\'store_true\', help=\'half precision FP16 inference\')
    parser.add_argument(\'--device\', default=\'\', help=\'device id (i.e. 0 or 0,1) or cpu\')
    parser.add_argument(\'--view-img\', action=\'store_true\', help=\'display results\')
    opt = parser.parse_args()
    print(opt)

    with torch.no_grad():
        detect()

 

以上是关于python detect.py的主要内容,如果未能解决你的问题,请参考以下文章

python detect_need_build.py

python detect_need_build.py

魔改并封装 YoloV5 Version7 的 detect.py 成 API接口以供 python 程序使用

[YOLO专题-26]:YOLO V5 - ultralytics代码解析-detect.py程序的流程图与对应的plantUML源码

修改YOLOv5 detect.py代码使其能逐个视频检测保存,同时对每个视频内参数进行单独操作

yolov5-master代码详解笔记——detect模块