python 归类--玉蕴而珠藏

Posted 拂髯客

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python 归类--玉蕴而珠藏相关的知识,希望对你有一定的参考价值。

python 高级知识整理

重要概念

  • *** python 语言概述 ***

*** python 中一切皆对象,type 产生 type 类本身的 实例 产生 object 类, dict 等内建类, class 为万物之始,包括 type(object), class 生 object 只道法自然 str <-- \'abc\'
object 是所有对象的 基类包括 type.bases, object.bases 之上再无父类

python 是基于协议的编程语言,因其动态语言的特性,也使得python开发效率极高,但同时也会容易产生很多问题,因为一切皆对象包括类本身,很多问题只有在运行时才能检测出来,
而像JAVA 这种静态语言,在编译时候就能够检测出问题,如:类型检测等

  • GIL全局解释器锁

因为Python的线程虽然是真正的线程,但解释器执行代码时,有一个GIL锁:Global Interpreter Lock,任何Python线程执行前,必须先获得GIL锁,然后,每执行100条字节码,解释器就自动释放GIL锁,让别的线程有机会执行。这个GIL全局锁实际上把所有线程的执行代码都给上了锁,所以,多线程在Python中只能交替执行,即使100个线程跑在100核CPU上,也只能用到1个核。
同一时刻,只可能有一个线程在 解释器(cpython) 上运行

  • 属性查找过程,涉及到数据描述符

getattribute(), 无条件调用
② 数据描述符:由 ① 触发调用 (若人为的重载了该 getattribute() 方法,可能会调职无法调用描述符)
③ 实例对象的字典(若与描述符对象同名,会被覆盖哦)
④ 类的字典
⑤ 非数据描述符
⑥ 父类的字典
getattr() 方法

class IntField:

    def __get__(self, instance, owner):
        print(\'get..data descriptor...\')

        return self.value

    def __set__(self, instance, value):
        print(\'set..data descriptor...\')
        self.value = value

    def __delete__(self, instance):
        pass

class NonDataField:
    def __get__(self, instance, owner):
        return 30


"""
问题5. 天天提属性查询优先级,就不能总结一下吗?

    答:好的好的,客官稍等!

    ① __getattribute__(), 无条件调用

    ② 数据描述符:由 ① 触发调用 (若人为的重载了该 __getattribute__() 方法,可能会调职无法调用描述符)

    ③ 实例对象的字典(若与描述符对象同名,会被覆盖哦)

    ④ 类的字典

    ⑤ 非数据描述符

    ⑥ 父类的字典

    ⑦ __getattr__() 方法
"""

class Parent:
    age = 88
    # age1

class Test(Parent):

    def __getattribute__(self, item):
        return \'道之始也, 无条件覆盖一切属性查找\'

    \'\'\'数据描述符\'\'\'
    # age = IntField()

    def __init__(self, name, info=None):
        self.name = name
        self.info = info
        \'\'\'实例属性中\'\'\'
        # self.age = 10

    \'\'\'类属性字典中\'\'\'
    # age = 20

    \'\'\'非数据描述符\'\'\'
    # age = NonDataField()

    # 然后去父类字典里查找

    def __getattr__(self, item):
        # 实在没找到才进入本方法
        return self.info.get(item, \'not found in info dictionary...\')
        # 若 这里都没有给值 则抛出 AttributeError 异常

if __name__ == \'__main__\':
    test = Test(\'frank\',{})
    # test.age = 212
    print(test.age)
    # 属性查找顺序 __getattribute__ >> 数据描述符 >> 实例 test.__dict__ >> 类字典 Test.__dict__ >> 非数据描述符 >> 父类字典 >> 最后实在找不到 就去问 __getattr__ 要 >> 再没有抛出 AttributeError 异常
    pass

视频作者回答
描述符分为数据描述符和非数据描述符。把至少实现了内置属性__set__()和__get__()方法的描述符称为数据描述符;把实现了除__set__()以外的方法的描述符称为非数据描述符。之所以要区分描述符的种类,主要是因为它在代理类属性时有着严格的优先级限制。例如当使用数据描述符时,因为数据描述符大于实例属性,所以当我们实例化一个类并使用该实例属性时,该实例属性已被数据描述符代理,此时我们对该实例属性的操作是对描述符的操作。描述符的优先级的高低如下:

  类属性 > 数据描述符 > 实例属性 > 非数据描述符 > 找不到的属性触发__getattr__()
  • 类的实例化过程 涉及到元类编程
from abc import abstractmethod, abstractstaticmethod, abstractclassmethod
import numbers





class Field:
    def __init__(self, db_column=None):
        self._db_column = db_column

    @property
    def db_column(self):
        return self._db_column

    @db_column.setter
    def db_name(self, value):
        self._db_column = value

    @abstractmethod
    def __get__(self, instance, owner):
        pass
    @abstractmethod
    def __set__(self, instance, value):
        pass
    @abstractmethod
    def __delete__(self, instance):
        pass

class PositiveIntField(Field):
    def __init__(self, db_column=None, min_value=None, max_value=None):
        super().__init__(db_column)
        if min_value:
            if not isinstance(min_value, numbers.Integral):
                raise ValueError(\'min value should be int\')
            elif min_value < 0:
                raise ValueError(\'min value should be positive\')

        if max_value:
            if not isinstance(max_value, numbers.Integral):
                raise ValueError(\'max value should be int\')
            elif max_value < 0:
                raise ValueError(\'max value should be positive\')
        if min_value > max_value:
            raise ValueError(\'min value should be smaller than max value\')
        else:
            self._min_value, self._max_value = min_value, max_value

    def __get__(self, instance, owner):
        return self._value

    def __set__(self, instance, value):
        if not isinstance(value, int):
            raise ValueError(\'value should be int\')
        if not (self._min_value < value < self._max_value):
            raise ValueError(\'value should between min value and max value\')
        self._value = value
    def __delete__(self, instance):
        pass




class CharField(Field):
    def __init__(self, max_length, db_name=None):
        super().__init__(db_name)
        if max_length < 0:
            raise ValueError(\'max length should be positive int\')
        self._max_length = max_length
    def __get__(self, instance, owner):
        return self._value

    def __set__(self, instance, value):
        if not isinstance(value, str):
            raise ValueError(\'value should be str\')
        self._value = value


class ModelMeta(type):

    def __new__(cls, name, bases, attrs, **kwargs):
        if name == \'BaseModel\':
            return type.__new__(cls, name, bases, attrs, **kwargs)
        table_name = None
        _attr_dict = {}
        fields = {}
        # values = []

        for key, value in attrs.items():
            if isinstance(value, Field):
                print(key, value)
                fields[key] = value
                # values.append(value)
        table_name = attrs[\'_table_name\'] if \'_table_name\' else name.lower()

        attrs[\'fields\'] = fields
        attrs[\'table_name\'] = table_name

        return type.__new__(cls, name, bases, attrs, **kwargs)

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)


class BaseModel(metaclass=ModelMeta):

    def __init__(self, **kwargs):

        if kwargs:
            for key, value in kwargs.items():
                setattr(self, key, value)

        super().__init__()

    def save(self):
        table_name = self.table_name
        fields = getattr(self, \'fields\')
        columns = fields.keys()
        values = [str(value._value) for value in fields.values()]

        for key, value in fields.items():
            print(key, \'-sb-\',  getattr(self, key))

        sql = f\'insert {table_name}({",".join(columns)}) values({"".join(values)})\'
        print(sql)
        pass

class User(BaseModel):
    age = PositiveIntField(\'\', 1, 100)
    name = CharField(50)
    _table_name = \'user323\'
    def __init__(self, **kwargs):
        super().__init__(**kwargs)

    def __str__(self):
        return \'User({name}, {age})\'.format(name=self.name, age=self.age)


if __name__ == \'__main__\':
    user = User(name=\'frank\', age=18)
    print(user)
    user.save()
    
### 新 orm 
# -*- coding: utf-8 -*-
__author__ = \'Frank Li\'
from collections import UserDict
from numbers import Integral
class Field(object):
    pass

class IntField(Field):
    def __init__(self,db_column,min_value=None,max_value=None):
        self._value = None
        self.min_value = min_value
        self.max_value = max_value
        self.db_column = db_column
        if min_value:
            if not isinstance(min_value,Integral):
                raise ValueError(\'min_value must be int\')
            elif min_value < 0:
                raise ValueError(\'min_value must be positive int\')
        if max_value:
            if not isinstance(max_value,Integral):
                raise ValueError(\'max_value must be int\')
            elif max_value < 0:
                raise ValueError(\'max_value should be positive int\')
        if min_value and max_value:
            if min_value > max_value:
                raise ValueError(\'min_value must be smaller than max_value\')

    def __get__(self, instance, owner):
        return self._value
    # 数据描述符的标志
    def __set__(self, instance, value):
        if not isinstance(value,Integral):
            raise ValueError(\'value must be int\')
        if self.min_value and self.max_value:
            if not (self.min_value <= self._value <= self.max_value):
                raise ValueError(\'value should between min_value and max_value!\')
        self._value = value

class CharField(Field):
    def __init__(self,db_column=None,max_length=None):
        self._value = None
        self.db_column = db_column
        if not max_length:
            raise ValueError(\'you must spcify max_length for charfield \')
        self.max_lenght = max_length

    def __get__(self, instance, owner):
        return self._value
    def __set__(self, instance, value):
        if not isinstance(value,str):
            raise ValueError(\'value should be an instance of str\')
        if len(value) > self.max_lenght:
            raise ValueError(\'value len excess len of max_length\')
        self._value = value



class ModelMetaclass(type):
    def __new__(cls, name,bases,attrs):
        if name == \'BaseModel\':
            return super().__new__(cls,name,bases,attrs)
        fields = {}
        for key, value in attrs.items():
            if isinstance(value,Field):
                fields[key] = value
        attrs_meta = attrs.get("Meta", None)
        _meta = {}
        db_table = name.lower()
        if attrs_meta:
            table = getattr(attrs_meta,\'db_table\',None)
            if table:
                db_table = table
        _meta["db_table"] = db_table
        attrs["_meta"] = _meta
        attrs[\'fields\'] = fields
        del attrs[\'Meta\']
        return super().__new__(cls,name,bases,attrs)


class BaseModel(metaclass=ModelMetaclass):
    def __init__(self,**kwargs):
        for key, value in kwargs.items():
            setattr(self,key,value)
        super(BaseModel,self).__init__()
    def save(self):
        fields = []
        values = []
        for key, value in self.fields.items():
            db_column = value.db_column
            if not db_column:
                db_column = key.lower()
            fields.append(db_column)
            value = getattr(self,key)
            values.append(str(value) if not isinstance(value,str) else "\'{}\'".format(value))
        sql = \'insert into {db_table} ({field_list}) values({value_list})\'.format(db_table=self._meta.get(\'db_table\'),field_list=\',\'.join(fields),value_list=\',\'.join(values))
        print(sql)
        pass

class User(BaseModel):
    age = IntField(db_column=\'age\',min_value=0,max_value=100)
    name = CharField(db_column=\'column\',max_length=10)

    class Meta:
        db_table = \'user\'

if __name__ == \'__main__\':
    user = User()
    user.name = \'frank\'
    user.age = 18
    user.save()

LEGB 变量查找
LEGB

# enclosure 
def num():
    return [lambda x:i*x for i in range(4)]

if __name__ == \'__main__\':
    logging.debug([func(2) for func in num()])
    # 答案:[6, 6, 6, 6]
    # 解析: 问题的本质在与python中的属性查找规则,LEGB(local,enclousing,global,bulitin),
    # 在上面的例子中,i就是在闭包作用域(enclousing),而Python的闭包是
    # 迟绑定 ,
    # 这意味着闭包中用到的变量的值,是在内部函数被调用时查询得到的
    # 所以:[lambda x: i * x for i in range(4)]
    # 打印出来是含有四个内存地址的列表,每个内存地址中的i
    # 在在本内存中都没有被定义,而是通过闭包作用域中的i值,当for循环执行结束后,i的值等于3,所以
    # 再执行[m(2)
    # for m in num()]时,每个内存地址中的i值等于3,当x等于2时,打印出来的结果都是6,
    # 从而得到结果[6, 6, 6, 6]。

迭代器模式 iter() ==》 Iterator ,

# -*- coding: utf-8 -*-
__author__ = \'Frank Li\'
from collections import Iterator
class Company:
    def __init__(self,employee_list=None):
        if not isinstance(employee_list,(tuple,list)):
            raise TypeError(\'employee_list should be a instance of tuple or list...\')
        self.employee_list = employee_list

    def __iter__(self):
        return  CompanyIterator(self.employee_list)  #iter(self.employee_list)

class CompanyIterator(Iterator): # 若不继承 ,则需要 覆写 __iter__ 协议
    def __init__(self,employee_list):
        self.employee_list = employee_list
        self._index = 0
   
    def __iter__(self): # 继承 Iterator 可以省略
        return self

    def __next__(self):
        try:
            word = self.employee_list[self._index]

        except IndexError:
            raise StopIteration
        self._index+=1
        return word


if __name__ == \'__main__\':
    company = Company([\'a\',\'b\',\'c\'])
    for c in company:
        print(c)
        
def read_file_chunk(file_path,new_line=\'\\n\',chunk_size=4096):
    buf = \'\'
    with open(file_path) as f:
        while True:
            chunk = f.read(chunk_size)
            while new_line in buf:
                pos = buf.index(new_line)
                yield buf[:pos]
                buf = buf[pos+len(new_line):]
            if not chunk:
                yield buf
                break
            buf+=chunk


python 垃圾回收 内存管理

  • Python是如何进行内存管理的?
从三个方面来说,一对象的引用计数机制,二垃圾回收机制,三内存池机制

一、对象的引用计数机制

Python内部使用引用计数,来保持追踪内存中的对象,所有对象都有引用计数。
 引用计数增加的情况:
 1,一个对象分配一个新名称
 2,将其放入一个容器中(如列表、元组或字典)
 引用计数减少的情况:
 1,使用del语句对对象别名显示的销毁
 2,引用超出作用域或被重新赋值
 sys.getrefcount( )函数可以获得对象的当前引用计数
 多数情况下,引用计数比你猜测得要大得多。对于不可变数据(如数字和字符串),解释器会在程序的不同部分共享内存,以便节约内存。

二、垃圾回收

1,当一个对象的引用计数归零时,它将被垃圾收集机制处理掉。
 2,当两个对象a和b相互引用时,del语句可以减少a和b的引用计数,并销毁用于引用底层对象的名称。然而由于每个对象都包含一个对其他对象的应用,因此引用计数不会归零,对象也不会销毁。(从而导致内存泄露)。为解决这一问题,解释器会定期执行一个循环检测器,搜索不可访问对象的循环并删除它们。

三、内存池机制

Python提供了对内存的垃圾收集机制,但是它将不用的内存放到内存池而不是返回给操作系统。
 1,Pymalloc机制。为了加速Python的执行效率,Python引入了一个内存池机制,用于管理对小块内存的申请和释放。
 2,Python中所有小于256个字节的对象都使用pymalloc实现的分配器,而大的对象则使用系统的malloc。
 3,对于Python对象,如整数,浮点数和List,都有其独立的私有内存池,对象间不共享他们的内存池。也就是说如果你分配又释放了大量的整数,用于缓存这些整数的内存就不能再分配给浮点数。


28、Python垃圾回收机制?

python采用的是引用计数机制为主,标记-清除和分代收集(隔代回收、分代回收)两种机制为辅的策略
 计数机制
 Python的GC模块主要运用了引用计数来跟踪和回收垃圾。在引用计数的基础上,还可以通过“标记-清除”
 解决容器对象可能产生的循环引用的问题。通过分代回收以空间换取时间进一步提高垃圾回收的效率。
 标记-清除:
 标记-清除的出现打破了循环引用,也就是它只关注那些可能会产生循环引用的对象
 缺点:该机制所带来的额外操作和需要回收的内存块成正比。
 隔代回收
 原理:将系统中的所有内存块根据其存活时间划分为不同的集合,每一个集合就成为一个“代”,
 垃圾收集的频率随着“代”的存活时间的增大而减小。也就是说,活得越长的对象,就越不可能是垃圾,
 就应该减少对它的垃圾收集频率。那么如何来衡量这个存活时间:通常是利用几次垃圾收集动作来衡量,
 如果一个对象经过的垃圾收集次数越多,可以得出:该对象存活时间就越长。


代码管理 git

git push --set-upstream origin dev

git clean -d -fx

git stash

git pull

git stash pop
当你多次使用’git stash’命令后,你的栈里将充满了未提交的代码,这时候你会对将哪个版本应用回来有些困惑,
’git stash list’ 命令可以将当前的Git栈信息打印出来,你只需要将找到对应的版本号,例如使用’git stash apply stash@{1}’就可以将你指定版本号为stash@{1}的工作取出来,当你将所有的栈都应用回来的时候,可以使用’git stash clear’来将栈清空。

git push origin --delete dev
git branch -d dev

常用模块

  • os和sys模块的作用?
    os模块负责程序与操作系统的交互,提供了访问操作系统底层的接口;
    sys模块负责程序与python解释器的交互,提供了一系列的函数和变量,用于操控python的运行时环境。
  • 常用模块
import random
random.shuffle
random.choice
random.sample
random.random

青出于蓝的 requests >> urllib
Pillow(新)  PIL(2.7 远古时代)
psutils  <== process and system utilities
import chardet
from contextlib import contextmanager,closing

reload(sys)
sys.setdefaultencoding("utf-8")

在Python 3.x中不好使了 提示 name ‘reload’ is not defined

在3.x中已经被毙掉了被替换为

import importlib
importlib.reload(sys)
pylint
pyflakes
pysonar2
Fabric
import traceback

sys.argv与optparse与argparse与getopt
谷歌的 fire 模块
import dis 分析函数过程等...
代码统计 cloc
excel 读写 pandas + xlrd , xlsxwriter
lxml
shutil
f-string


import string
import random
li = list(range(10))
li.extend(string.ascii_letters)
print(random.sample(li, 6))
import chardet
import requests
response = requests.get(\'http://www.baidu.com\')
chardet.detect(response.content)
{\'encoding\': \'utf-8\', \'confidence\': 0.99, \'language\': \'\'}

集合操作


from collections import namedtuple

User = namedtuple(\'User\',[\'name\',\'age\',\'height\',\'edu\'])
user_tuple = (\'Frank\',18,180,\'master\')
user_dict = dict(name=\'Tom\',age=20,height=175,edu=\'PHD\')
user = User._make(user_tuple)
print(\',\'.join(map(lambda x:str(x) if not isinstance(x,str) else x,user)))
ordered_user_dict = user._asdict()
print(ordered_user_dict)
from collections import namedtuple,defaultdict,deque,Counter,OrderedDict,ChainMap

# named_tuple
def test():
    User = namedtuple(\'User\',[\'name\',\'age\',\'height\',\'edu\'])
    user_tuple = (\'Frank\',18,180,\'master\')
    user_dict = dict(name=\'Tom\',age=20,height=175,edu=\'PHD\')
    user = User._make(user_tuple)
    user = User._make(user_dict)
    print(\',\'.join(map(lambda x:str(x) if not isinstance(x,str) else x,user)))
    ordered_user_dict = user._asdict()
    print(ordered_user_dict)

# default dict
def test2():
    user_dict = {}
    user_list = [\'frank\',\'tom\',\'tom\',\'jim\',\'Tom\']
    for user in user_list:
        u = user.lower()
        user_dict.setdefault(u,0)
        user_dict[u]+=1

        # if not u in user_dict:
        #     user_dict[u] = 1
        # else:
        #     user_dict[u]+=1
    print(user_dict)

def gen_default_0():
    return 0

def test3():
    user_dict = defaultdict(int or gen_default_0 or (lambda :0))
    user_list = [\'frank\',\'tom\',\'Tom\',\'jim\']
    for user in user_list:
        u = user.lower()
        user_dict[u]+=1

    print(user_dict)


# deque 线程安全
def test4():
    dq = deque([\'a\',\'b\',\'c\'])
    dq.appendleft(\'1\')
    print(dq)
    dq.extendleft([\'e\',\'f\',\'g\'])
    print(dq)
    dq.popleft()
    print(dq)
    dq.insert(0,\'g\')
    print(dq)

# Counter
def test5():
    user_list = [\'frank\',\'tom\',\'tom\',\'jim\']
    user_counter = Counter(user_list)
    print(user_counter.most_common(2))
    alpha_counter = Counter(\'abccddadfaefedasdfwewefwfsfsfadadcdffghethethklkijl\')
    alpha_counter.update(\'fsfjwefjoe9uefjsljdfljdsoufbadflfmdlmjjdsnvdljflasdj\')
    print(alpha_counter.most_common(3))

#OrderedDict 只是说按照插入顺序有序。。。!!!
def test6():
    ordered_dict = OrderedDict()
    ordered_dict[\'b\'] = \'2\'
    ordered_dict[\'a\'] = \'1\'
    ordered_dict[\'c\'] = \'3\'

    # print(ordered_dict.popitem(last=False)) # last=True 从最后一个开始pop 否则从第一个开始
    # print(ordered_dict.pop(\'a\'))  # 返回 被 pop 掉对应的 value
    ordered_dict.move_to_end(\'b\') #将指定 key 的 键值对移到最后位置
    print(ordered_dict)

# 将多个 dict 串成链 车珠子。。。
def test7():
    user_dict_1 = dict(a=1,b=2)
    user_dict_2 = dict(b=3,c=5) # 两个出现同样key,采取第一次出现的value
    chain_map = ChainMap(user_dict_1,user_dict_2)
    new_chain_map = chain_map.new_child({\'d\': 6, \'e\': 7, \'f\': 8})
    for key, value in chain_map.items():
        print(\'{}--->{}\'.format(key,value))
    print(\'*\'*100)
    for key, value in new_chain_map.items():
        print(\'{}--->{}\'.format(key,value))

if __name__ == \'__main__\':
    test()
    test2()
    test3()
    test4()
    test5()
    test6()
    test7()

自定义序列类 支持切片操作

# -*- coding: utf-8 -*-
import numbers
import bisect
class Group(object):
    # 支持切片
    def __init__(self,group_name,company_name,staffs):
        self.group_name = group_name
        self.company_name = company_name
        self.staffs = staffs

    def __reversed__(self):
        self.staffs.reverse()
    
    def __getitem__(self, item):
        cls = type(self)
        if isinstance(item,slice):
            return cls(group_name=self.group_name,company_name=self.company_name,staffs=self.staffs[item])
        elif isinstance(item,numbers.Integral):
            return cls(group_name=self.group_name,company_name=self.company_name,staffs=[self.staffs[item]])
    
    def __len__(self):
        return len(self.staffs)
    
    def __iter__(self):
        return iter(self.staffs)
    
    def __contains__(self, item):
        return item in self.staffs



if __name__ == \'__main__\':
    group = Group(group_name=\'AI Team\',company_name=\'Intel\',staffs=[\'Frank\',\'Tom\',\'Jim\'])
    print(len(group))
    print(group[2].staffs)
    reversed(group)  # 反转
    for item in group[1:]:
        print(item)



使用 bisect 维护排序好的序列

# -*- coding: utf-8 -*-
import bisect
from collections import deque

def test():
    insert_seq = deque()
    bisect.insort(insert_seq,3)
    bisect.insort(insert_seq,2)
    bisect.insort(insert_seq,4)
    return insert_seq

if __name__ == \'__main__\':
    res = test()
    print(res)
    # 应该
    print(bisect.bisect(res,7))  #bisect = bisect_right   # backward compatibility
    print(res)

如果 一个数组类型 都一样 建议使用 array ,因为其查找效率较高

import array
my_array = array.array(\'i\')
for i in range(10):
    my_array.append(i)
print(my_array)

my_list = [\'person1\',\'person2\']
my_dict = dict.fromkeys(my_list,[{\'name\':\'frank\'},{\'name\':\'tom\'}])
print(my_dict)
from collections import Counter

"""
找出出现频率最高的数字
"""
def find_top1(t_list):
    summary = {item:test.count(item)for item in test}
    result = sorted(summary.items(), key=lambda t:t[1], reverse=True)
    return result.pop(0)

def find_top(t_list):
    result = {}
    for item in t_list:
        if item in result:
            result[item] += 1
        else:
            result[item] = 1
    return sorted(result.items(), key=lambda t:t[1], reverse=True).pop(0)


if __name__ == \'__main__\':
    test = [1, 2, 3, 4, 2, 2, 3, 1, 4, 4, 4]
    t = Counter(test)
    print(t.most_common(1))
    print(find_top(test))
    print(max(set(test),key=test.count))


from collections import namedtuple,defaultdict,deque,Counter,OrderedDict,ChainMap

# named_tuple
def test():
    User = namedtuple(\'User\',[\'name\',\'age\',\'height\',\'edu\'])
    user_tuple = (\'Frank\',18,180,\'master\')
    user_dict = dict(name=\'Tom\',age=20,height=175,edu=\'PHD\')
    user = User._make(user_tuple)
    user = User._make(user_dict)
    print(\',\'.join(map(lambda x:str(x) if not isinstance(x,str) else x,user)))
    ordered_user_dict = user._asdict()
    print(ordered_user_dict)

# default dict
def test2():
    user_dict = {}
    user_list = [\'frank\',\'tom\',\'tom\',\'jim\',\'Tom\']
    for user in user_list:
        u = user.lower()
        user_dict.setdefault(u,0)
        user_dict[u]+=1

        # if not u in user_dict:
        #     user_dict[u] = 1
        # else:
        #     user_dict[u]+=1
    print(user_dict)

def gen_default_0():
    return 0

def test3():
    user_dict = defaultdict(int or gen_default_0 or (lambda :0))
    user_list = [\'frank\',\'tom\',\'Tom\',\'jim\']
    for user in user_list:
        u = user.lower()
        user_dict[u]+=1

    print(user_dict)


# deque 线程安全
def test4():
    dq = deque([\'a\',\'b\',\'c\'])
    dq.appendleft(\'1\')
    print(dq)
    dq.extendleft([\'e\',\'f\',\'g\'])
    print(dq)
    dq.popleft()
    print(dq)
    dq.insert(0,\'g\')
    print(dq)

# Counter
def test5():
    user_list = [\'frank\',\'tom\',\'tom\',\'jim\']
    user_counter = Counter(user_list)
    print(user_counter.most_common(2))
    alpha_counter = Counter(\'abccddadfaefedasdfwewefwfsfsfadadcdffghethethklkijl\')
    alpha_counter.update(\'fsfjwefjoe9uefjsljdfljdsoufbadflfmdlmjjdsnvdljflasdj\')
    print(alpha_counter.most_common(3))

#OrderedDict 只是说按照插入顺序有序。。。!!!
def test6():
    ordered_dict = OrderedDict()
    ordered_dict[\'b\'] = \'2\'
    ordered_dict[\'a\'] = \'1\'
    ordered_dict[\'c\'] = \'3\'

    # print(ordered_dict.popitem(last=False)) # last=True 从最后一个开始pop 否则从第一个开始
    # print(ordered_dict.pop(\'a\'))  # 返回 被 pop 掉对应的 value
    ordered_dict.move_to_end(\'b\') #将指定 key 的 键值对移到最后位置
    print(ordered_dict)

# 将多个 dict 串成链 车珠子。。。
def test7():
    user_dict_1 = dict(a=1,b=2)
    user_dict_2 = dict(b=3,c=5) # 两个出现同样key,采取第一次出现的value
    chain_map = ChainMap(user_dict_1,user_dict_2)
    new_chain_map = chain_map.new_child({\'d\': 6, \'e\': 7, \'f\': 8})
    for key, value in chain_map.items():
        print(\'{}--->{}\'.format(key,value))
    print(\'*\'*100)
    for key, value in new_chain_map.items():
        print(\'{}--->{}\'.format(key,value))

if __name__ == \'__main__\':
    test()
    test2()
    test3()
    test4()
    test5()
    test6()
    test7()
    
from collections import defaultdict
import logging
logging.basicConfig(level=logging.DEBUG)
def group_by_firstletter(words=None):
    word_dict = {}
    for word in words:
        first_letter = word[0]
        if first_letter in word_dict:
            word_dict[first_letter] += 1
        else:
            word_dict[first_letter] = 1
    return word_dict

def group_by_firstletter2(words=None):
    default_word_dict = defaultdict(int)
    for word in words:
        default_word_dict[word[0]]+=1
    return default_word_dict

def group_by_firstletter3(words=None):
    words_dict = {}
    for word in words:
        if word[0] in words_dict:
            words_dict[word[0]].append(word)
        else:
            words_dict[word[0]] = [word]
    return words_dict

def group_by_firstletter4(words=None):
    default_word_dict = defaultdict(list)
    for word in words:
        default_word_dict[word[0]].append(word)
    return default_word_dict

if __name__ == \'__main__\':
    words = [\'apple\', \'bat\', \'bar\', \'atom\', \'book\']
    logging.info(group_by_firstletter(words))
    logging.info(group_by_firstletter2(words))
    logging.info(group_by_firstletter3(words))
    logging.info(group_by_firstletter4(words))
	
from collections import Iterator, Iterable
from collections import defaultdict
from collections import Counter, ChainMap, OrderedDict, namedtuple, deque
from itertools import islice  #  替代 切片,但是只能 是正数
from itertools import zip_longest # 替代 zip 可以 对不一样个数的 进行迭代

from concurrent.futures import ThreadPoolExecutor as Pool


from collections import namedtuple, deque, defaultdict, OrderedDict, ChainMap, Counter

Point = namedtuple(\'Poing\',[\'x\',\'y\',\'z\'])
p = Point(1,2,3)
print(p.x,\'--\',p.y,\'--\',p.z)

# 双向列表
dq = deque([1,2,3,4])
dq.append(5)
dq.appendleft(\'a\')
dq.popleft()

default_dict = defaultdict(lambda:\'N/A\') # 多了一个默认值
default_dict[\'name\']=\'frank\'
default_dict[\'age\']

od = OrderedDict([(\'b\',1),(\'a\',2),(\'c\',3)]) # 按照插入的顺序有序
od.get(\'a\')


# 可以实现一个FIFO(先进先出)的dict,当容量超出限制时,先删除最早添加的Key
from collections import OrderedDict

class LastUpdatedOrderedDict(OrderedDict):

    def __init__(self, capacity):
        super(LastUpdatedOrderedDict, self).__init__()
        self._capacity = capacity
    
    def __setitem__(self, key, value):
        containsKey = 1 if key in self else 0
        if len(self) - containsKey >= self._capacity:
            last = self.popitem(last=False)
            print(\'remove:\', last)
        if containsKey:
            del self[key]
            print(\'set:\', (key, value))
        else:
            print(\'add:\', (key, value))
        OrderedDict.__setitem__(self, key, value)


# 应用场景 设置参数优先级
from collections import ChainMap
import os, argparse

# 构造缺省参数:
defaults = {
    \'color\': \'red\',
    \'user\': \'guest\'
}

# 构造命令行参数:
parser = argparse.ArgumentParser()
parser.add_argument(\'-u\', \'--user\')
parser.add_argument(\'-c\', \'--color\')
namespace = parser.parse_args()
command_line_args = { k: v for k, v in vars(namespace).items() if v }

# 组合成ChainMap:
combined = ChainMap(command_line_args, os.environ, defaults)

# 打印参数:
print(\'color=%s\' % combined[\'color\'])
print(\'user=%s\' % combined[\'user\'])


itertools

from itertools import count, repeat, cycle, chain, takewhile, groupby

def times_count(base,n):
    for x in count(base):
        if n<=0:
            break
        yield str(x)
        n-=1

def times_repeat(s,n):
    return \'-\'.join(repeat(s,n))

def times_cycle(s,n):
    for v in cycle(s):
        if n<= 0:
            break
        yield s
        n-=1

if __name__ == \'__main__\':
    print(times_repeat(\'*\',3))
    for s in times_cycle(\'ABC\',3):
        print(s)
    r = \',\'.join(chain(\'ABC\', \'XYZ\'))
    print(r)
    print(\',\'.join(times_count(5,3)))
    print(\',\'.join( takewhile(lambda x:int(x)<10, times_count(1,30))))
    group_dict = {key:list(group) for key, group in groupby([\'abort\',\'abandon\',\'book\',\'cook\',\'bird\'], lambda ch: ch[0].upper())}
    print(group_dict)

# -*- coding: utf-8 -*-
import itertools
from functools import reduce


def pi(N):
    \' 计算pi的值 \'
    # step 1: 创建一个奇数序列: 1, 3, 5, 7, 9, ...
    odd_iter = itertools.count(1, 2)

    # step 2: 取该序列的前N项: 1, 3, 5, 7, 9, ..., 2*N-1.
    odd_head = itertools.takewhile(lambda n: n <= 2 * N - 1, odd_iter)
    #     print(list(odd_head),end=\',\')
    # step 3: 添加正负符号并用4除: 4/1, -4/3, 4/5, -4/7, 4/9, ...
    odd_final = [4 / n * ((-1) ** i) for i, n in enumerate(odd_head)]
    # step 4: 求和:
    value = reduce(lambda x, y: x + y, odd_final)
    return value


# 测试:
print(pi(10))
print(pi(100))
print(pi(1000))
print(pi(10000))
assert 3.04 < pi(10) < 3.05
assert 3.13 < pi(100) < 3.14
assert 3.140 < pi(1000) < 3.141
assert 3.1414 < pi(10000) < 3.1415
print(\'ok\')


查找 两值之和 等于 目标值的 下标的生成器

def find_idx(tar, t_list):
    low, high = 0, len(t_list) - 1
    while low<high:
        print(low,\'--\', high)
        while low < high:
            if t_list[low] + t_list[high] == tar:
                print(\'found...\')
                yield low, high
            high-=1
        low+=1


if __name__ == \'__main__\':
    li = [2, 7, 11, 15]
    for low, high in find_idx(9,li):
        print(low,\'--\',high)

**重置递归限制 **

Python 限制递归次数到 1000,我们可以重置这个值

import sys

print(sys.getrecursionlimit())
#1-> 1000
sys.setrecursionlimit(x)
print(sys.getrecursionlimit())
#2-> 1001

list 去重

# 给 list 去重
li = [1, 1, 1, 23, 3, 4, 4]
li_set = {}.fromkeys(li).keys() or set(li)

单例

  • 装饰器实现单例
def singleton(cls):
    instance_dict = {}
    def singleton_wrapper(*args, **kwargs):
        print(id(instance_dict))
        if cls not in instance_dict:
            instance_dict[cls] = cls(*args, **kwargs)
        return instance_dict[cls]
    return singleton_wrapper

@singleton
class SingleTest():
    pass

if __name__ == \'__main__\':
    s1 = SingleTest()
    s2 = SingleTest()
    assert s1 == s2
  • 基于 new 方法的 单例
# 基于 __new__ 方法的 单例,跟 java 懒汉式一样需要考虑线程安全问题

import threading
import logging
logging.basicConfig(level=logging.DEBUG, format=\'%(asctime)s - %(filename)s[line:%(lineno)d] - %(levelname)s: %(message)s\')

class Person:
    _instance_lock = threading.Lock()
    def __new__(cls, *args, **kwargs):
        if not hasattr(cls,\'_instance\'):
            with cls._instance_lock:
                cls._instance = object.__new__(cls)
        return cls._instance

if __name__ == \'__main__\':
    person_1 = Person()
    person_2 = Person()
    assert  person_1 is person_2

二分查找

def bin_find(num,li=None):
    li.sort() # 二分查找前提就是先要保证有序
    low, high = 0, len(li)
    indx = None
    while low<=high:
        mid = (low+high) // 2
        if li[mid] > num:
            high = mid-1
        elif li[mid]<num:
            low = mid+1
        else:
            indx = mid
            break
    return indx


if __name__ == \'__main__\':
    lis = [0, 1, 3, 4, 5, 6, 7, 9, 10, 11, 12, 16, 17]
    logging.debug(bin_find(12,lis))
    
# 模拟栈操作

class Stack(object):

    def __init__(self):
        self._stack = []
    def push(self,element):
        self._stack.append(element)
    def pop(self):
        self._stack.pop()
    def is_empty(self):
        return bool(self._stack)
    def top(self):
        try:
            top_value = self._stack[0]
        except Exception:
            raise ValueError(\'empty stack...\')

模拟发红包

81、代码实现随机发红包功能

import random
def red_packge(money,num):
    li = random.sample(range(1,money*100),num-1)
    li.extend([0,money*100])
    li.sort()
    return [(li[index+1]-li[index])/100 for index in range(num)]

ret = red_packge(100,10)
print(ret)

--------------------------生成器版-------------------------------------------
import random
def red_packge(money,num):
    li = random.sample(range(1,money*100),num-1)
    li.extend([0,money*100])
    li.sort()
    for index in range(num):
        yield (li[index+1]-li[index])/100

ret = red_packge(100,10)
print(ret)

断言

assert  list(map(lambda x:x**2,range(1,11))) ==  [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
# 使用 unittest 进行单元测试可以用 assertEquals
import unittest

class MyUnitTest(unittest.TestCase):

    def test_assert(self):
        self.assertEqual(list(map(lambda x:x**2,range(1,11))), [1, 4, 9, 16, 25, 36, 49, 64, 81, 100])

if __name__ == \'__main__\':
    unittest.main()

import unittest

class MyUnitTest(unittest.TestCase):

    def test_assert(self):
        self.assertEqual(list(map(lambda x:x**2 , range(3))), [0,1,4])




if __name__ == \'__main__\':
    suit = unittest.defaultTestLoader.loadTestsFromTestCase(MyUnitTest)
    runner = unittest.TextTestRunner()
    runner.run(suit)

伴随视频可以观看

pycharm远程调试本地代码
ip代理

inspect 内省

import inspect

def a(a, b=0, *c, d, e=1, **f):
    pass

aa = inspect.signature(a)
print("inspect.signature(fn)是:%s" % aa)
print("inspect.signature(fn)的类型:%s" % (type(aa)))
print("\\n")

bb = aa.parameters
print("signature.paramerters属性是:%s" % bb)
print("ignature.paramerters属性的类型是%s" % type(bb))
print("\\n")

for cc, dd in bb.items():
    print("mappingproxy.items()返回的两个值分别是:%s和%s" % (cc, dd))
    print("mappingproxy.items()返回的两个值的类型分别是:%s和%s" % (type(cc), type(dd)))
    print("\\n")
    ee = dd.kind
    print("Parameter.kind属性是:%s" % ee)
    print("Parameter.kind属性的类型是:%s" % type(ee))
    print("\\n")
    gg = dd.default
    print("Parameter.default的值是: %s" % gg)
    print("Parameter.default的属性是: %s" % type(gg))
    print("\\n")


ff = inspect.Parameter.KEYWORD_ONLY
print("inspect.Parameter.KEYWORD_ONLY的值是:%s" % ff)
print("inspect.Parameter.KEYWORD_ONLY的类型是:%s" % type(ff))
import inspect

def func_a(arg_a, *args, arg_b=\'hello\', **kwargs):
    print(arg_a, arg_b, args, kwargs)

class Fib:
    def __init__(self,n):
        a, b = 0, 1
        i = 0
        self.fib_list = []
        while i<n:
            self.fib_list.append(a)
            a, b = b, a+b
            i+=1
    def __getitem__(self, item):
        return self.fib_list[item]

if __name__ == \'__main__\':
    fib = Fib(5)
    print(fib[0:3])


    # 获取函数签名
    func_signature = inspect.signature(func_a)
    func_args = []
    # 获取函数所有参数
    for k, v in func_signature.parameters.items():
        # 获取函数参数后,需要判断参数类型
        # 当kind为 POSITIONAL_OR_KEYWORD,说明在这个参数之前没有任何类似*args的参数,那这个函数可以通过参数位置或者参数关键字进行调用
        # 这两种参数要另外做判断
        if str(v.kind) in (\'POSITIONAL_OR_KEYWORD\', \'KEYWORD_ONLY\'):
            # 通过v.default可以获取到参数的默认值
            # 如果参数没有默认值,则default的值为:class inspect_empty
            # 所以通过v.default的__name__ 来判断是不是_empty 如果是_empty代表没有默认值
            # 同时,因为类本身是type类的实例,所以使用isinstance判断是不是type类的实例
            if isinstance(v.default, type) and v.default.__name__ == \'_empty\':
                func_args.append({k: None})
            else:
                func_args.append({k: v.default})
        # 当kind为 VAR_POSITIONAL时,说明参数是类似*args
        elif str(v.kind) == \'VAR_POSITIONAL\':
            args_list = []
            func_args.append(args_list)
        # 当kind为 VAR_KEYWORD时,说明参数是类似**kwargs
        elif str(v.kind) == \'VAR_KEYWORD\':
            args_dict = {}
            func_args.append(args_dict)
    
    print(func_args)

import inspect


def func_a(arg_a, *args, arg_b=\'hello\', **kwargs):
    print(arg_a, arg_b, args, kwargs)


if __name__ == \'__main__\':

    # 获取函数签名
    func_signature = inspect.signature(func_a)
    func_args = []
    # 获取函数所有参数
    for k, v in func_signature.parameters.items():
        # 获取函数参数后,需要判断参数类型
        # 当kind为 POSITIONAL_OR_KEYWORD,说明在这个参数之前没有任何类似*args的参数,那这个函数可以通过参数位置或者参数关键字进行调用
        # 这两种参数要另外做判断
        if str(v.kind) in (\'POSITIONAL_OR_KEYWORD\', \'KEYWORD_ONLY\'):
            # 通过v.default可以获取到参数的默认值
            # 如果参数没有默认值,则default的值为:class inspect_empty
            # 所以通过v.default的__name__ 来判断是不是_empty 如果是_empty代表没有默认值
            # 同时,因为类本身是type类的实例,所以使用isinstance判断是不是type类的实例
            if isinstance(v.default, type) and v.default.__name__ == \'_empty\':
                func_args.append({k: None})
            else:
                func_args.append({k: v.default})
        # 当kind为 VAR_POSITIONAL时,说明参数是类似*args
        elif str(v.kind) == \'VAR_POSITIONAL\':
            args_list = []
            func_args.append(args_list)
        # 当kind为 VAR_KEYWORD时,说明参数是类似**kwargs
        elif str(v.kind) == \'VAR_KEYWORD\':
            args_dict = {}
            func_args.append(args_dict)
    
    print(func_args)

解析 html

from html.parser import HTMLParser
from html.entities import name2codepoint

class MyHTMLParser(HTMLParser):

    def handle_starttag(self, tag, attrs):
        print(\'<%s>\' % tag)
    
    def handle_endtag(self, tag):
        print(\'</%s>\' % tag)
    
    def handle_startendtag(self, tag, attrs):
        print(\'<%s/>\' % tag)
    
    def handle_data(self, data):
        print(data)
    
    def handle_comment(self, data):
        print(\'<!--\', data, \'-->\')
    
    def handle_entityref(self, name):
        print(\'&%s;\' % name)
    
    def handle_charref(self, name):
        print(\'&#%s;\' % name)

parser = MyHTMLParser()
parser.feed(\'\'\'<html>
<head></head>
<body>
<!-- test html parser -->
    <p>Some <a href=\\"#\\">html</a> HTML&nbsp;tutorial...<br>END</p>
</body></html>\'\'\')

解析 xml

import lxml
from xml.parsers.expat import ParserCreate

class DefaultSaxHandler(object):
    def start_element(self, name, attrs):
        print(\'sax:start_element: %s, attrs: %s\' % (name, str(attrs)))

    def end_element(self, name):
        print(\'sax:end_element: %s\' % name)
    
    def char_data(self, text):
        print(\'sax:char_data: %s\' % text)

xml = r\'\'\'<?xml version="1.0"?>
<ol>
    <li><a href="/python">Python</a></li>
    <li><a href="/ruby">Ruby</a></li>
</ol>
\'\'\'

handler = DefaultSaxHandler()
parser = ParserCreate()
parser.StartElementHandler = handler.start_element
parser.EndElementHandler = handler.end_element
parser.CharacterDataHandler = handler.char_data
parser.Parse(xml)

日期操作

# datetime
from datetime import datetime,timedelta

now = datetime.now()

# datetime 转 timestamp
now_timestamp = now.timestamp()

# timestampe 转本地 datetime
dt_local = datetime.fromtimestamp(now_timestamp)
# timestampe 转utc datetime
dt_utc = datetime.utcfromtimestamp(now_timestamp)

# 时间戳 没有时区, datetime中携带
print(dt_local.timestamp(),\'<-->\',dt_utc.timestamp())

print(\'{}\\n{}\\n{}\\n{}\'.format(now,now_timestamp,dt_local,dt_utc))
# 获取指定 日期和时间
year = 2019
month =3
day =3
hour = 15
minute = 7
dt_specified = datetime(year,month,day,hour,minute)
print(dt_specified)

# str 转 datetime  str parse
datetime_str = \'2019-03-03 15:22:00\'
datetime_parse_format = \'%Y-%m-%d %H:%M:%S\'
cday = datetime.strptime(datetime_str,datetime_parse_format)
print(cday)

# datetime 转 str  str format
print(cday.strftime(\'%Y/%m/%d\'))

# 日期变化(delta) 用 timedelta
now = datetime.now()
now_next3_hours =  now+timedelta(hours=3)
now_previous3_days = now+timedelta(days=-3)
print(\'next 3 hours: {}\'.format(now_next3_hours))

print(\'now_previous3_days: {}\'.format(now_previous3_days))

from datetime import timezone

tz_utc_8 = timezone(timedelta(hours=8))
now = datetime.now()
# 一开始 now 时区信息为 None
print(now.tzinfo)
# 暴力设置一个时区
now.replace(tzinfo=tz_utc_8)
print(now)

utc_now = datetime.utcnow()
# 一开始这玩意儿压根木有时区信息啊
print(utc_now.tzinfo)
# 暴力设置时区信息
utc_now = utc_now.replace(tzinfo=timezone.utc)

#北京日期时间 东八区
bj_dt = utc_now.astimezone(timezone(timedelta(hours=8)))
# 西八区
pst_dt = utc_now.astimezone(timezone(timedelta(hours=-8)))
# 东 9 区
tokyo_dt = utc_now.astimezone(timezone(timedelta(hours=9)))

print(\'bj_dt: \',bj_dt)
print(\'pst_dt: \',pst_dt)
print(\'tokyo_dt: \',tokyo_dt)



from datetime import datetime, timezone,timedelta
import re

def to_timestamp(dt_str,tz_str):
    re_dt_str_1 = r\'\\d{4}-\\d{1,2}-\\d{1,2}\\s\\d{1,2}:\\d{1,2}:\\d{1,2}\'
    
    re_tz_str = r\'^UTC([+-])(\\d{1,2}):\\d{2}$\'
    
    tz_grps = re.match(re_tz_str,tz_str).groups()
    
    sign = tz_grps[0]
    hours = int(tz_grps[1])
    
    if re.match(re_dt_str_1,dt_str):
        dt = datetime.strptime(dt_str,\'%Y-%m-%d %H:%M:%S\')
        if sign==\'+\':
            tz_info_x = timezone(timedelta(hours=hours))
        else:
            tz_info_x = timezone(timedelta(hours=-hours))
        dt = dt.replace(tzinfo=tz_info_x)
    else:
        print(\'re is wrong!\')
        
    return dt.timestamp()

# 测试:
t1 = to_timestamp(\'2015-6-1 08:10:30\', \'UTC+7:00\')

assert t1 == 1433121030.0, t1

t2 = to_timestamp(\'2015-5-31 16:10:30\', \'UTC-09:00\')
assert t2 == 1433121030.0, t2

print(\'ok\')

python 魔法函数也就是 协议(python 中实现了某些方法则他就可以等同该类型)

# 事实证明,所有序列操作都应该会先走特定的魔法函数,然后实在没有转入 __getitem__
from collections.abc import Iterable, Iterator
from types import GeneratorType
from contextlib import contextmanager
class Company:
    def __init__(self,employee_list):
        self.employee_list = employee_list

    # 序列相关
    def __getitem__(self, item):
        print(\'getitem executed...\')
        cls = type(self)
        if isinstance(item,slice):
            return cls(self.employee_list[item])
        elif isinstance(item,int):
            return cls([self.employee_list[item]])
    
    def __setitem__(self, key, value):
        self.employee_list[key] = value
    
    def __delitem__(self, key):
        del self.employee_list[key]
    
    def __len__(self):
        print(\'len executed...\')
        return len(self.employee_list)
    
    def __contains__(self, item):
        print(\'contains executed...\')
        return item in self.employee_list


    # 迭代相关
    # 实现了 __iter__ 仅仅是刻碟带对象 (Iterable)
    def __iter__(self):
        print(\'iter executed...\')
        return iter(self.employee_list)
    
    # 实现 __next__ 仅仅只是迭代器(Iterator)不是生成器
    def __next__(self):
        print(\'next executed...\')
        pass
    
    # 可调用
    def __call__(self, *args, **kwargs):
        print(\'__call__ executed...\')
        pass
    
    # 上下文管理
    def __enter__(self):
        # self.fp = open(\'xxx\')
        print(\'__enter__ executed...\')
        pass
    def __exit__(self, exc_type, exc_val, exc_tb):
        print(\'__exit__ executed...\')
        pass
        # 释放资源等操作 self.fp.close()
    
    @contextmanager
    def Resource(self):
        self.fp = open(\'./sample.csv\')
        yield self.fp
        self.fp.close()
    
    def __repr__(self):
        return \',\'.join(self.employee_list)
    __str__ = __repr__

if __name__ == \'__main__\':
    company = Company([\'Frank\',\'Tom\',\'May\'])
    company()
    for employee in company:
        print(employee)
    print(company[1:])
    print(isinstance(company,Iterable))
    print(isinstance(company,Iterator))
    print(isinstance(company,GeneratorType))
    print(isinstance((employee for employee in company),GeneratorType))
    print(len(company))
    print(\'Jim\' in company)

class MyVector(object):
    def __init__(self,x,y):
        self.x = x
        self.y = y

    def __add__(self, other):
        cls = type(self)
        return cls(self.x+other.x, self.y+other.y)
    
    def __repr__(self):
        return \'({},{})\'.format(self.x,self.y)
    def __str__(self):
        return self.__repr__()
if __name__ == \'__main__\':
    vector1 = MyVector(1,2)
    vector2 = MyVector(2,3)
    assert str(vector1+vector2) == \'(3,5)\'
    assert (vector1+vector2).__repr__() == \'(3,5)\'



import abc

class CacheBase(metaclass=abc.ABCMeta):

    @abc.abstractmethod
    def set(self,key):
        pass
    @abc.abstractmethod
    def get(self,value):
        pass

class RedisCache(CacheBase):
    pass

# 实际用抽象基类不多,更多的是用的 mixin 做法 鸭子类型,可以参考 Django restfulAPI framework
if __name__ == \'__main__\':
    redis_cache = RedisCache() # TypeError: Can\'t instantiate abstract class RedisCache with abstract methods get, set


生成器 (协程的底层原理)

### 生成器原理 以及 协程的 最底层原理
import dis
def gen_func():
    yield 1
    name = \'frank\'
    yield 2
    age = 30
    yield age
    return "imooc"

if __name__ == \'__main__\':
    # print(dis.dis(foo))
    # foo()
    # print(\'*\'*100)
    # print(frame.f_code.co_name)
    # caller_frame = frame.f_back
    # print(caller_frame.f_code.co_name)
    gen = gen_func()
    print(dis.dis(gen))
    print(gen.gi_frame.f_lasti)
    print(gen.gi_frame.f_locals)
    next(gen)
    print(gen.gi_frame.f_lasti)
    print(gen.gi_frame.f_locals)
    next(gen)
    print(gen.gi_frame.f_lasti)
    print(gen.gi_frame.f_locals)
    next(gen)
    print(gen.gi_frame.f_lasti)
    print(gen.gi_frame.f_locals)
    
    

彻底弄懂 函数 在 堆内存中 栈帧的 具体操作

# -*- coding: utf-8 -*-
__author__ = \'Frank Li\'

import dis
import inspect

frame = None
def foo():
    bar()
    pass

def bar():
    global frame
    frame = inspect.currentframe()


if __name__ == \'__main__\':
    print(dis.dis(foo))
    foo()
    print(\'*\'*100)
    print(frame.f_code.co_name)
    caller_frame = frame.f_back
    print(caller_frame.f_code.co_name)


多线程 多进程

# -*- coding: utf-8 -*-
__author__ = \'Frank Li\'
import socket
server = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
server.bind((\'127.0.0.1\',6666))
clients = set()
print(\'server bind 127.0.0.1:6666...\')

while 1:
    try:
        data,addr = server.recvfrom(1024)
        clients.add(addr)
        if not data or data.decode(\'utf-8\')==\'pong\':
            continue
        print(\'%s:%s >>> %s\' % (addr[0],addr[1],data.decode(\'utf-8\')))
        for usr in clients:
            if usr!=addr:
                server.sendto((\'%s:%s >>> %s\' % (addr[0],addr[1],data.decode(\'utf-8\'))).encode(\'utf-8\'),usr)
    except Exception as e:
        pass
		
########################################################
# -*- coding: utf-8 -*-
__author__ = \'Frank Li\'

import socket,threading,os

client = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
client.sendto(b\'pong\',(\'127.0.0.1\',6666))

def myinput():
    while 1:
        try:
            msg = input(\'>>>\')
            yield msg
        except Exception as e:
            os._exit(0)

def getMsg(client):
    while 1:
        try:
            r = client.recv(1024)
            print(\'\\n\',r.decode(\'utf-8\'),\'\\n>>>\',end=\'\')
        except Exception as e:
            pass

c = myinput()
def sendMsg(msg):
    while 1:
        msg = next(c)
        client.sendto(msg.encode(\'utf-8\'),(\'127.0.0.1\',6666))

threading.Thread(target=sendMsg,args=(client,)).start()
threading.Thread(target=getMsg,args=(client,)).start()

多线程 第二种方法 ,继承 threading.Thread 覆写 run 方法 跟 java 一样 ,还有一种就是 t = Thread(target=func_name,args=(arg1,arg2,))

from threading import Thread
import time
import logging
logging.basicConfig(level=logging.DEBUG)

class Get_html(Thread):
    def __init__(self, name):
        super(Get_html,self).__init__(name=name)

    def run(self):
        logging.info(\'thread {name} started...\'.format(name=self.name))
        time.sleep(2)
        logging.info(\'thread {name} ended...\'.format(name=self.name))

class Parse_html(Thread):
    def __init__(self, name):
        super().__init__(name=name)

    def run(self):
        logging.info(\'Thread {name} started...\'.format(name=self.name))
        time.sleep(4)
        logging.info(\'Thread {name} ended...\'.format(name=self.name))

if __name__ == \'__main__\':
    start = time.time()
    get_html_thread = Get_html(\'get_html_thread\')
    parse_html_thread = Parse_html(\'parse_html_thread\')
    get_html_thread.start()
    parse_html_thread.start()

    get_html_thread.join()
    parse_html_thread.join()
    
    logging.info(\'cost {} in total...\'.format(time.time()-start))
>>> import chardet
>>> import requests
>>> response = requests.get(\'http://www.baidu.com\')
>>> chardet.detect(response.content)
{\'encoding\': \'utf-8\', \'confidence\': 0.99, \'language\': \'\'}
# -*- coding: utf-8 -*-
__author__ = \'Frank Li\'
from threading import (Thread,Lock)

lock = Lock()
total=0

def ascend():
    global total
    global lock
    for i in range(10**6):
        with lock:
            total+=1

def descend():
    global total
    global lock
    for i in range(10**6):
        lock.acquire()
        total-=1
        lock.release()

if __name__ == \'__main__\':
    ascend_thread = Thread(target=ascend)
    descend_thread = Thread(target=descend)
    ascend_thread.start()
    descend_thread.start()

    ascend_thread.join()
    descend_thread.join()
    print(total)

可重入锁

# -*- coding: utf-8 -*-
__author__ = \'Frank Li\'
from threading import (Thread,Lock,RLock)

### 线程间同步问题 用 锁来保证安全, 但是要防止死锁的发生,所以在单个线程里引入 RLock(可重入锁)
# lock = Lock()
lock = RLock()
total=0

def ascend():
    global total
    global lock
    for i in range(10**6):
        with lock:
            total+=1

def descend():
    global total
    global lock
    for i in range(10**6):
        lock.acquire()
        lock.acquire()  # lock 为 Lock 时候 死锁, RLock则不会
        total-=1
        lock.release()  # 为了 防止线程间 死锁,这里释放一下
        lock.release()

if __name__ == \'__main__\':
    ascend_thread = Thread(target=ascend)
    descend_thread = Thread(target=descend)
    ascend_thread.start()
    descend_thread.start()

    ascend_thread.join()
    descend_thread.join()
    print(total)

(threading 模块下) Condition 用于线程间同步 wait ,notify(all) ,Semaphore 用于控制每次创建线程数,方便实用当然是线程池,进程池(concurrent.futures 下)

from threading import (Thread,Condition)

class XiaoAI(Thread):
    def __init__(self,cond,name=\'小爱\'):
        super().__init__(name=name)
        self.cond = cond

    def run(self):
        with self.cond:
            self.cond.wait()
            print(\'{name}: 在\'.format(name=self.name))
            self.cond.notify()
    
            self.cond.wait()
            print(\'{name}: 好啊!\'.format(name=self.name))
            self.cond.notify()
class TianMao(Thread):
    def __init__(self,cond,name=\'天猫\'):
        super().__init__(name=name)
        self.cond = cond

    def run(self):
        with cond:
            print(\'{name}:小爱同学\'.format(name=self.name))
            self.cond.notify()
            self.cond.wait()
            print(\'{name}: 我们来对古诗吧。\'.format(name=self.name))
            self.cond.notify()
            self.cond.wait()


if __name__ == \'__main__\':
    cond = Condition()
    xiao = XiaoAI(cond)
    tian = TianMao(cond)

    xiao.start()
    tian.start()
    xiao.join()
    tian.join()


from threading import (Thread,Semaphore)
from urllib.parse import urlencode
import requests
import chardet
import logging
from os import path
import random
import re
logging.basicConfig(level=logging.DEBUG)
# https://tieba.baidu.com/f?kw=%E5%B8%83%E8%A2%8B%E6%88%8F&ie=utf-8&pn=100

class TieBaSpider(Thread):
    def __init__(self,url,sem,name=\'TieBaSpider\'):
        super(TieBaSpider,self).__init__(name=name)
        self.url = url
        self.sem = sem

    def _save(self,text):
        parent_dir = r\'D:\\tieba\'
        file_name = path.join(parent_dir,path.split(re.sub(r\'[%|=|&|?]\',\'\',self.url))[1])+\'.html\'
        with open(file_name,\'w\',encoding=\'utf-8\') as fw:
            fw.write(text)
            fw.flush()
        return 1


    def run(self):
        # ua_list = ["Mozilla/5.0 (Macintosh; Intel Mac OS X 10.6; rv2.0.1) Gecko/20100101 Firefox/4.0.1",
        #            "Mozilla/5.0 (Windows NT 6.1; rv2.0.1) Gecko/20100101 Firefox/4.0.1",
        #            "Opera/9.80 (Macintosh; Intel Mac OS X 10.6.8; U; en) Presto/2.8.131 Version/11.11",
        #            "Opera/9.80 (Windows NT 6.1; U; en) Presto/2.8.131 Version/11.11",
        #            "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_0) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.56 Safari/535.11"]
        # header = {\'User-Agent\':random.choice(ua_list)}
        response = requests.get(self.url)#header=header)
        content = response.content
        logging.info(response.encoding)
        # result = chardet.detect(content)
        # logging.info(result)
        # code = result.get(\'encoding\',\'utf-8\')
        self._save(content.decode(response.encoding))
        self.sem.release()

class UrlProducer(Thread):
    def __init__(self,tb_name,sem,pages_once=3,start_index=1,end_index=9):# end-start % pages_once == 0
        super(UrlProducer,self).__init__(name=tb_name)
        self.tb_name = urlencode(tb_name)
        self.sem = sem
        logging.info(self.tb_name)
        self.pages_once = pages_once
        self.start_index = start_index
        self.end_index = end_index

    def run(self):
        for page_idx in range(self.start_index,self.end_index+1):
            self.sem.acquire()
            url_prefix = r\'https://tieba.baidu.com/f?\'
            url_suffix = r\'&fr=ala0&tpl=\'
            self.url = url_prefix+self.tb_name+url_suffix+str(page_idx)
            tb_spider = TieBaSpider(self.url,self.sem)
            tb_spider.start()


if __name__ == \'__main__\':
    kw_dict = dict(kw=r\'国家地理\')
    sem = Semaphore(3) # 控制一次并发 3 个线程
    url_producer = UrlProducer(kw_dict,sem=sem)
    url_producer.start()

    url_producer.join()




from concurrent.futures import ThreadPoolExecutor, as_completed
import time
from concurrent.futures import Future
def get_html(times):
    time.sleep(times)
    print(\'get page {} success\'.format(times))
    return times

if __name__ == \'__main__\':
    pool = ThreadPoolExecutor(max_workers=2)
    task_2 = pool.submit(get_html,(2))
    task_3 = pool.submit(get_html,(3))

    # print(dir(task_2))  #Future
    # print(task_3.done())
    #
    # if task_3.done():
    #     print(task_3.result())
    #
    # time.sleep(5)
    # print(task_3.done())
    # if task_3.done():
    #     print(task_3.result())
    urls = [1,2,3,4]
    all_tasks = [pool.submit(get_html,url) for url in urls]
    
    for future in as_completed(all_tasks):
        res = future.result()
        print(\'get result {}\'.format(res))
    
    print(\'*\'*100)
    
    for res in pool.map(get_html,urls):
        print(\'get result {} using map\'.format(res))


线程池与进程池分别进行 模拟 cpu 计算 跟 IO 等待 并发 总结


\'\'\'
cpu 计算密集型, 多进程 消耗时间少于线程 因为 GIL 锁的存在
iO 密集型, 多线程其实因为 GIL 锁 本应该也要弱于多进程,但是切换线程的开销比较多进程切换而言更低
一个主机可以开的线程数与可以开的进程数是不可同日而语的,所以,python的多线程也并不是一无是处

io 主要花在时间等待上故可以用 time.sleep 来模拟, cpu 主要花在计算可以用斐波拉契数列来模拟
\'\'\'

python-----文件自动归类

python应用之 重命名照片+照片归类

python: 命令选项及归类

常用python日期日志获取内容循环的代码片段

python 有用的Python代码片段

Python 向 Postman 请求代码片段