1什么是Gist特征
(1) 一种宏观意义的场景特征描述
(2) 只识别“大街上有一些行人”这个场景,无需知道图像中在那些位置有多少人,或者有其他什么对象。
(3) Gist特征向量可以一定程度表征这种宏观场景特征
GIST定义下列五种对空间包络的描述方法
空间包络名 | 阐释 |
---|---|
自然度(Degree of Naturalness) | 场景如果包含高度的水平和垂直线,这表明该场景有明显的人工痕迹,通常自然景象具有纹理区域和起伏的轮廓。所以,边缘具有高度垂直于水平倾向的自然度低,反之自然度高。 |
开放度(Degree of Openness) | 空间包络是否是封闭(或围绕)的。封闭的,例如:森林、山、城市中心。或者是广阔的,开放的,例如:海岸、高速公路。 |
粗糙度(Degree of Roughness) | 主要指主要构成成分的颗粒大小。这取决于每个空间中元素的尺寸,他们构建更加复杂的元素的可能性,以及构建的元素之间的结构关系等等。粗糙度与场景的分形维度有关,所以可以叫复杂度。 |
膨胀度(Degree of Expansion) | 平行线收敛,给出了空间梯度的深度特点。例如平面视图中的建筑物,具有低膨胀度。相反,非常长的街道则具有高膨胀度。 |
险峻度(Degree of Ruggedness) | 即相对于水平线的偏移。(例如,平坦的水平地面上的山地景观与陡峭的地面)。险峻的环境下在图片中生产倾斜的轮廓,并隐藏了地平线线。大多数的人造环境建立了平坦地面。因此,险峻的环境大多是自然的。 |
2 Gist的实现--LMgist
-
LMgist的Matlab代码 LMgist Matlab代码
-
LMgist Matlab代码的使用
% 读取图片
img = imread(\'demo2.jpg\');
% 设置GIST参数
clear param
param.orientationsPerScale = [8 8 8 8]; % number of orientations per scale (from HF to LF)
param.numberBlocks = 4;
param.fc_prefilt = 4;
% 计算GIST
[gist, param] = LMgist(img, \'\', param);
3 LMgist原理
3.1 LMgist算法主流程
- G1:对输入图片进行预处理 (RGB或RGBA转128x128灰度图)
- G2:对输入图片进行Prefilt处理
- G3:计算图片的Gist向量
3.2 G2 对输入图片进行Prefilt处理
3.2.1 Pad images to reduce boundary artifacts (扩边+去伪影)
图1 sympading操作
3.2.2 Filter (构造滤波器)
3.2.3 Whitening (白化)
3.2.4 Local contrast normalization (局部对比度归一化)
3.2.5 Local contrast normalization (局部对比度归一化)
3.3 计算图片的Gist向量
3.3.1 Pading
3.3.2 FFT
3.3.3 遍历每个Gabor核函数
图2 全局Gist特征的提取
4 LMgist的Python实现
GitHub代码 https://github.com/Kalafinaian/python-img_gist_feature
4.1 提取Gist特征
import cv2
from img_gist_feature.utils_gist import *
s_img_url = "./test/A.jpg"
gist_helper = GistUtils()
np_img = cv2.imread(s_img_url, -1)
print("default: rgb")
np_gist = gist_helper.get_gist_vec(np_img)
print("shape ", np_gist.shape)
print("noly show 10dim", np_gist[0,:10], "...")
print()
print("convert rgb image")
np_gist = gist_helper.get_gist_vec(np_img, mode="rgb")
print("shape ", np_gist.shape)
print("noly show 10dim", np_gist[0,:10], "...")
print()
print("convert gray image")
np_gist = gist_helper.get_gist_vec(np_img, mode="gray")
print("shape ", np_gist.shape)
print("noly show 10dim", np_gist[0,:10], "...")
print()
运行得到的gist特征为
default: rgb
shape (1, 1536)
noly show 10dim [0.02520592 0.05272802 0.05941689 0.05476999 0.13110509 0.13333975
0.29072759 0.16522023 0.25032277 0.36850457] ...
convert rgb image
shape (1, 1536)
noly show 10dim [0.02520592 0.05272802 0.05941689 0.05476999 0.13110509 0.13333975
0.29072759 0.16522023 0.25032277 0.36850457] ...
convert gray image
shape (1, 512)
noly show 10dim [0.10004389 0.20628179 0.17682694 0.16277722 0.10557428 0.14448622
0.29214159 0.11260066 0.16488087 0.28381876] ...
4.2 Gist特征余弦相似距离
下载好github中的代码项目,运行python _test_get_cossim.py