决策树与随机森林分类算法(Python实现)

Posted Shelinton

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了决策树与随机森林分类算法(Python实现)相关的知识,希望对你有一定的参考价值。

一、原理:

决策树:能够利用一些决策结点,使数据根据决策属性进行路径选择,达到分类的目的。

一般决策树常用于DFS配合剪枝,被用于处理一些单一算法问题,但也能进行分类 。

也就是通过每一个结点的决策进行分类,那么关于如何设置这些结点的决策方式:

熵:描述一个集合内元素混乱程度的因素。

熵的衡量公式

技术图片?

技术图片

公式中的熵值 Entropy 会随着集合中类别数量增加而快速增加,也就是说一个集合中类别越少,那么它的熵就小,整体就越稳定。

对于一个标记数据集,要合理的建立一棵决策树,就需要合理的决定决策结点来使决策树尽快的降低熵值。

如何选择合适的决策:

(1)信息增溢 

对于当前的集合,对每一个决策属性都尝试设置为决策结点的目标,计算决策分类前的熵值 与 分类后的所有子集的熵值 的差。选择最大的,作为当前的决策目标。

此方式有一些确定,就是当面对一些决策变量的分类子集很多,而子集却很小的情况。这次办法虽然会很快的降低熵,但这并不是我们想要的。

(2)信息增溢率

这是对熵增溢的一种改进,把原本的前后熵值的差,增加: 

决策分类前属性的熵和 与 决策分类后的的熵 的比值,如果比值很小,说明分类分很多,损失值就会很大。

(3)gini系数: 技术图片 

gini系数和信息增溢率比较像

决策树的剪枝 :

预剪枝:设置max_depth来达到建树过程中的剪枝,表示树的最大深度

后剪枝:通过min_sample_split与min_sample_leaf来对已经建成的决策树进行剪枝,分别是结点的元素个数与子树的叶子结点个数

随机森林 :

构建多个决策树,从而得到更加符合期望的一些决策结果。以森林的结果众数来表示结果。

往往采用生成子数据集,取60%随机生成数据集

交叉验证: 

几折交叉验证方式为,将训练数据进行几次对折,取一部分作为测试集,其他作为训练集。并将每个部分轮流作为测试集,最后得到一个平均评分。 

网格超参数调优:

对分类器的参数进行调优评价,最后得到一个最优的参数组,并作为最终的分类器的参数。

二、实现 :

数据集:威斯康辛州乳腺癌数据集

import pandas as pd
df = pd.read_csv(文件所在路径reast_cancer.csv,encoding=gbk)
df.head()
df.res.value_counts()
y=df.res
y.head()
df=df.drop(index=0)#修正数据集
x=df.drop(res,axis=1)#去掉标签

技术图片?

技术图片

数据标签分布较为均衡

#导入决策树
from sklearn.tree import DecisionTreeClassifier
#导入随机森林
from sklearn.ensemble import RandomForestClassifier
#导入集合分割,交叉验证,网格搜索
from sklearn.model_selection import train_test_split,cross_val_score,GridSearchCV
seed=5#随机种子
#分割训练集与测试集
xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.3,random_state=seed)
#实例化随机森林
rfc=RandomForestClassifier()
#训练
rfc=rfc.fit(xtrain,ytrain)
测试评估
result=rfc.score(xtest,ytest)

技术图片?

print(所有树:%s%rfc.estimators_)
print(rfc.classes_)
print(rfc.n_classes)
print(判定结果:%s %rfc.predict(xtest))
print(判定结果:%s%rfc.predict_proba(xtest)[:,:])
print(判定结果:%s %rfc.predict_proba(xtest)[:,1])
#d1与d2结果相同
d1=np.array(pd.Series(rfc.predict_proba(xtest)[:,1]>0.5).map({False:0,True:1}))
d2=rfc.predict(xtest)
np.array_equal(d1,d2)
#导入评价模块
from sklearn.metrics import roc_auc_score,roc_curve,auc
#准确率
roc_auc_score(ytest,rfc.predict_proba(xtest)[:,1])
#结果:0.9935171385991058
print(各个feature的重要性:%s %rfc.feature_importances_)
std=np.std([tree.feature_importances_ for tree in rfc.estimators_],axis=0)
从大到小排序
indices = np.argsort(importances)[::-1]
print(Feature Ranking:)
for f in range(min(20,xtrain.shape[1])):
    print("%2d)%-*s %f"%(f+1, 30, xtrain.columns[indices[f]],importances[indices[f]]))

 

技术图片?

技术图片
绘图
#黑线是标准差
plt.figure()
plt.title("Feature importances")
plt.bar(range(xtrain.shap[1]), importances[indices], color=r, yerr=std[indices], align="center")
plt.xticks(range(xtrain.shap[1]), indices)
plt.xlim([-1, xtrain.shap[1]])
plt.show()

predictions_validation = rfc.predict_proba(xtest)[:,1]
fpr, tqr, _=roc_curve(ytest, predictions_validation)
roc_auc = auc(fpr, tqr)
plt.title(ROC Validation)
plt.plot(fpr, tqr, b, label=AUC = %0.2f%roc_auc)
plt.legend(loc=lower right)
plt.plot([0, 1], [0, 1], r--)
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel(True Position Rate)
plt.xlabel(False Postion Rate)
plt.show()

技术图片?

技术图片

技术图片?

技术图片

 

‘‘‘交叉验证‘‘‘
‘‘‘
sklearn.model_selection.cross_val_score(estimator, X,yscoring=None, cv=None,                                        n_jobs=1,verbose=0,fit_params=None,pre_dispatch=‘2*n_jobs‘)
estimator:估计方法对象(分类器)
X:数据特征(Featrues)
y:数据标签(Labels)
soring:调用方法(包括accuracy和mean_squared_error等等)
cv:几折交叉验证(样本等分成几个部分,轮流作为验证集来验证模型)
n_jobs:同时工作的cpu个数(-1 代表全部)
‘‘‘
#两种分类器的比较
#决策树
clf = DecisionTreeClassifier(max_depth=None,min_samples_split=2,random_state=0)
scores = cross_val_score(clf, xtrain, ytrain)
print(scores.mean())
#0.932157394843962
#随机森林
clf = RandomForestClassifier()
scores = cross_val_score(clf, xtrain, ytrain)
print(scores.mean())
#0.9471958389868838

 

技术图片

参数调优过程:

#参数调优
param_test1 = {n_estimators:range(25,500,25)}
gsearch1 = GridSearchCV(estimator = RandomForestClassifier(min_samples_split=100,
                                                          min_samples_leaf=20,
                                                          max_depth=8,random_state=10),
                       param_grid = param_test1,
                       scoring=roc_auc,
                       cv = 5)
gsearch1.fit(xtrain, ytrain)
‘‘‘调优结果‘‘‘
print(gsearch1.best_params_,gsearch1.best_score_)

param_test2 = {min_samples_split:range(60,200,20), min_samples_leaf:range(10,110,10)}
gsearch2 = GridSearchCV(estimator = RandomForestClassifier(n_estimators=50,
                                                          max_depth=8,random_state=10),
                       param_grid = param_test2,
                       scoring=roc_auc,
                       cv = 5)
gsearch2.fit(xtrain, ytrain)
‘‘‘调优结果‘‘‘
print(gsearch2.best_params_,gsearch2.best_score_)

param_test3 = {max_depth:range(3,30,2)}
gsearch1 = GridSearchCV(estimator = RandomForestClassifier(min_samples_split=60,
                                                          min_samples_leaf=10,
                                                           n_estimators=50,
                                                          random_state=10),
                       param_grid = param_test3,
                       scoring=roc_auc,
                       cv = 5)
gsearch3.fit(xtrain, ytrain)
‘‘‘调优结果‘‘‘
print(gsearch3.best_params_,gsearch3.best_score_)

param_test4 = {criterion:[gini,entropy], class_weight:[None, balanced]}
gsearch4 = GridSearchCV(estimator = RandomForestClassifier(n_estimators=50,
                                                           min_samples_split=60,
                                                           min_samples_leaf=10,
                                                           max_depth=3,
                                                           random_state=10),
                       param_grid = param_test4,
                       scoring=roc_auc,
                       cv = 5)
gsearch4.fit(xtrain, ytrain)
‘‘‘调优结果‘‘‘
print(gsearch4.best_params_,gsearch4.best_score_)
#gini,None

#整合所有最优参数值,得到最优评分
best_score = roc_auc_score(ytest, gsearch4.best_estimator_.predict_proba(xtest)[:,1])
print(best_score)
技术图片

技术图片?

技术图片
 

以上是关于决策树与随机森林分类算法(Python实现)的主要内容,如果未能解决你的问题,请参考以下文章

决策树与随机森林

机器学习:通俗易懂决策树与随机森林及代码实践

决策树与随机森林算法

web安全之机器学习入门——3.2 决策树与随机森林算法

决策树与随机森林

机器学习之决策树与随机森林模型