基于 Flink CDC 构建 MySQL 到 Databend 的 实时数据同步
Posted Databend
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了基于 Flink CDC 构建 MySQL 到 Databend 的 实时数据同步相关的知识,希望对你有一定的参考价值。
这篇教程将展示如何基于 Flink CDC 快速构建 MySQL 到 Databend 的实时数据同步。本教程的演示都将在 Flink SQL CLI 中进行,只涉及 SQL,无需一行 Java/Scala 代码,也无需安装 IDE。
假设我们有电子商务业务,商品的数据存储在 MySQL ,我们需要实时把它同步到 Databend 中。
接下来的内容将介绍如何使用 Flink Mysql/Databend CDC 来实现这个需求,系统的整体架构如下图所示:
准备阶段
准备一台已经安装了 Docker 和 docker-compose 的 Linux 或者 MacOS 。
准备教程所需要的组件
接下来的教程将以 docker-compose
的方式准备所需要的组件。
debezium-MySQL
docker-compose.yaml
version: \'2.1\'
services:
postgres:
image: debezium/example-postgres:1.1
ports:
- "5432:5432"
environment:
- POSTGRES_DB=postgres
- POSTGRES_USER=postgres
- POSTGRES_PASSWORD=postgres
mysql:
image: debezium/example-mysql:1.1
ports:
- "3306:3306"
environment:
- MYSQL_ROOT_PASSWORD=123456
- MYSQL_USER=mysqluser
- MYSQL_PASSWORD=mysqlpw
Databend
docker-compose.yaml
version: \'3\'
services:
databend:
image: datafuselabs/databend
volumes:
- /Users/hanshanjie/databend/local-test/databend/databend-query.toml:/etc/databend/query.toml
environment:
QUERY_DEFAULT_USER: databend
QUERY_DEFAULT_PASSWORD: databend
MINIO_ENABLED: \'true\'
ports:
- \'8000:8000\'
- \'9000:9000\'
- \'3307:3307\'
- \'8124:8124\'
在 docker-compose.yml
所在目录下执行下面的命令来启动本教程需要的组件:
ocker-compose up -d
该命令将以 detached 模式自动启动 Docker Compose 配置中定义的所有容器。你可以通过 docker ps 来观察上述的容器是否正常启动。
下载 Flink 和所需要的依赖包
- 下载 Flink 1.16.0 并将其解压至目录
flink-1.16.0
- 下载下面列出的依赖包,并将它们放到目录
flink-1.16.0/lib/
下: - 下载链接只对已发布的版本有效, SNAPSHOT 版本需要本地编译
编译 flink-connector-databend
git clone https://github.com/databendcloud/flink-connector-databend
cd flink-connector-databend
mvn clean install -DskipTests
将 target/flink-connector-databend-1.16.0-SNAPSHOT.jar 拷贝到目录 flink-1.16.0/lib/
下。
准备数据
在 MySQL 数据库中准备数据
进入 MySQL 容器
docker-compose exec mysql mysql -uroot -p123456
创建数据库 mydb 和表 products
,并插入数据:
CREATE DATABASE mydb;
USE mydb;
CREATE TABLE products (id INTEGER NOT NULL AUTO_INCREMENT PRIMARY KEY,name VARCHAR(255) NOT NULL,description VARCHAR(512));
ALTER TABLE products AUTO_INCREMENT = 10;
INSERT INTO products VALUES (default,"scooter","Small 2-wheel scooter"),
(default,"car battery","12V car battery"),
(default,"12-pack drill bits","12-pack of drill bits with sizes ranging from #40 to #3"),
(default,"hammer","12oz carpenter\'s hammer"),
(default,"hammer","14oz carpenter\'s hammer"),
(default,"hammer","16oz carpenter\'s hammer"),
(default,"rocks","box of assorted rocks"),
(default,"jacket","water resistent black wind breaker"),
(default,"cloud","test for databend"),
(default,"spare tire","24 inch spare tire");
Databend 中建表
CREATE TABLE bend_products (id INT NOT NULL, name VARCHAR(255) NOT NULL, description VARCHAR(512) );
启动 Flink 集群和 Flink SQL CLI
使用下面的命令跳转至 Flink 目录下
cd flink-16.0
使用下面的命令启动 Flink 集群
./bin/start-cluster.sh
启动成功的话,可以在 http://localhost:8081/ 访问到 Flink Web UI,如下所示:
使用下面的命令启动 Flink SQL CLI
./bin/sql-client.sh
在 Flink SQL CLI 中使用 Flink DDL 创建表
首先,开启 checkpoint,每隔3秒做一次 checkpoint
-- Flink SQL
Flink SQL> SET execution.checkpointing.interval = 3s;
然后, 对于数据库中的表 products
使用 Flink SQL CLI 创建对应的表,用于同步底层数据库表的数据
-- Flink SQL
Flink SQL> CREATE TABLE products (id INT,name STRING,description STRING,PRIMARY KEY (id) NOT ENFORCED)
WITH (\'connector\' = \'mysql-cdc\',
\'hostname\' = \'localhost\',
\'port\' = \'3306\',
\'username\' = \'root\',
\'password\' = \'123456\',
\'database-name\' = \'mydb\',
\'table-name\' = \'products\',
\'server-time-zone\' = \'UTC\'
);
最后,创建 d_products 表, 用来订单数据写入 Databend 中
-- Flink SQL
create table d_products (id INT,name String,description String, PRIMARY KEY (`id`) NOT ENFORCED)
with (\'connector\' = \'databend\',
\'url\'=\'databend://localhost:8000\',
\'username\'=\'databend\',
\'password\'=\'databend\',
\'database-name\'=\'default\',
\'table-name\'=\'bend_products\',
\'sink.batch-size\' = \'5\',
\'sink.flush-interval\' = \'1000\',
\'sink.max-retries\' = \'3\');
使用 Flink SQL 将 products 表中的数据同步到 Databend 的 d_products 表中:
insert into d_products select * from products;
此时 flink job 就会提交成功,打开 flink UI 可以看到:
同时在 databend 中可以看到 MySQL 中的数据已经同步过来了:
同步 Insert/Update 数据
此时我们在 MySQL 中再插入 10 条数据:
INSERT INTO products VALUES
(default,"scooter","Small 2-wheel scooter"),
(default,"car battery","12V car battery"),
(default,"12-pack drill bits","12-pack of drill bits with sizes ranging from #40 to #3"),
(default,"hammer","12oz carpenter\'s hammer"),
(default,"hammer","14oz carpenter\'s hammer"),
(default,"hammer","16oz carpenter\'s hammer"),
(default,"rocks","box of assorted rocks"),
(default,"jacket","water resistent black wind breaker"),
(default,"cloud","test for databend"),
(default,"spare tire","24 inch spare tire");
这些数据会立即同步到 Databend 当中。
假如此时 MySQL 中更新了一条数据:
那么 id=10 的数据在 databend 中也会被立即更新:
环境清理
操作结束后,在 docker-compose.yml
文件所在的目录下执行如下命令停止所有容器:
docker-compose down
在 Flink 所在目录 flink-1.16.0
下执行如下命令停止 Flink 集群:
./bin/stop-cluster.sh
结论
以上就是基于 Flink CDC 构建 MySQL 到 Databend 的 实时数据同步的全部过程,通过 Flink CDC connectors 可以替换 Debezium+Kafka 的数据采集模块,实现 Flink SQL 采集+计算+传输一体化,减少维护的组件,简化实时链路,减轻部署成本的同时也能达到 Exactly Once 的语义效果。
以上是关于基于 Flink CDC 构建 MySQL 到 Databend 的 实时数据同步的主要内容,如果未能解决你的问题,请参考以下文章
Flink 实战系列Flink CDC 实时同步 Mysql 全量加增量数据到 Hudi
Flink进阶篇-CDC 原理实践和优化&采集到Doris中