题目
https://leetcode-cn.com/problems/constrained-subsequence-sum/
给你一个整数数组 nums 和一个整数 k ,请你返回 非空 子序列元素和的最大值,子序列需要满足:子序列中每两个 相邻 的整数 nums[i] 和 nums[j] ,它们在原数组中的下标 i 和 j 满足 i < j 且 j - i <= k 。
数组的子序列定义为:将数组中的若干个数字删除(可以删除 0 个数字),剩下的数字按照原本的顺序排布。
示例 1:
输入:nums = [10,2,-10,5,20], k = 2
输出:37
解释:子序列为 [10, 2, 5, 20] 。
示例 2:
输入:nums = [-1,-2,-3], k = 1
输出:-1
解释:子序列必须是非空的,所以我们选择最大的数字。
示例 3:
输入:nums = [10,-2,-10,-5,20], k = 2
输出:23
解释:子序列为 [10, -2, -5, 20] 。
提示:
1 <= k <= nums.length <= 10^5
-10^4 <= nums[i] <= 10^4
解题思路
- 设dp[i]为以nums[i]结尾的满足要求的子数组最大和
- DP的递推公式是 dp[i] = max(dp[i-1], dp[i-2], ..., dp[i-k], 0) + nums[i]
- 如果直接这么写会TLE,所以需要应用滑动窗口取最大值的方法,O(N)的就是单调队列了
- 单调队列可以参考[LeetCode in Python] 239 (H) sliding window maximum 滑动窗口最大值
- 使用deque来存储k的窗口内dp[]的下标,存下标的好处是不怕相同元素,也方便比较滑窗边缘
- 先对dp和q初始化首元素,可以减少循环中的判断
代码
class Solution:
def constrainedSubsetSum(self, nums: List[int], k: int) -> int:
# - dp[i] is max sum of subset and must include nums[i]
# - formula is: dp[i] = max(dp[i-1], dp[i-2], ..., dp[i-k], 0) + nums[i]
dp = [0] * len(nums)
# - monotonic queue and keep index of dp[]
# - q[0] is the index of max dp[]
q = collections.deque()
# - init dp and q
dp[0] = nums[0]
q.append(0)
# - from 1 to n-1
for i in range(1, len(nums)):
# - update dp[i]
dp[i] = max(dp[q[0]], 0) + nums[i]
# - if window slide, pop the left most index
if q[0] == i-k:
q.popleft()
# - update q, pop all elements which less than current one
while q and dp[q[-1]] < dp[i]:
q.pop()
q.append(i)
return max(dp)