使用clickhouse和mysql查询时间对比

Posted 八戒vs

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了使用clickhouse和mysql查询时间对比相关的知识,希望对你有一定的参考价值。

业务场景,对于数据量过大的数据统计,跑脚本会很吃力

先建立一个clickhouse的mysql引擎表关联本地mysql数据表,以下这个表会自动同步mysql主表数据

CREATE TABLE test_table (
  id UInt32,
  message String,
  content String,
  remark String,
  order_id String,
  user_id UInt32,
  recharge_amount UInt32,
  bonus Decimal(10,2),
  create_time Datetime,
  update_time Datetime
)
ENGINE = MySQL(\'127.0.0.1:3306\',\'you_database\',\'you_table\',\'you_user\',\'you_password\');

再在clickhouse建立一个mergetree引擎数据表:

CREATE TABLE my_test_table (
  id UInt32,
  message String,
  content String,
  remark String,
  order_id String,
  user_id UInt32,
  recharge_amount UInt32,
  bonus Decimal(10,2),
  create_time Datetime,
  update_time Datetime,
  PRIMARY KEY (id)
)
ENGINE = MergeTree()
ORDER BY (id,create_time) 
SETTINGS index_granularity = 8192;

将test_table 数据插入到my_test_table :
INSERT INTO my_test_table SELECT * FROM test_table;

如图是mysql执行,需要耗时22s
select sum(recharge_amount) from test_table;

如图是clickhouse执行,耗时75ms,连一秒都不到:

对比下来,都知道用什么了吧

如何利用ClickHouse高速汇总查询MySQL数据

参考技术A 直连到MySQL的功能现在已被添加到ClickHouse中。所以可以直接从ClickHouse查询MySQL表中的数据。

ClickHouse是一个超高性能的海量数据快速查询的分布式实时处理平台,在数据汇总查询方面(如GROUP BY),ClickHouse的查询更快,因此通常情况下在MySQL上进行聚合。

下面是在自己的虚拟环境中做的测试记录。既然是虚拟环境非生产环境,请看参考应用级别,而不是严格的测试。

正确准备和测试大约1000万个数据项。

执行脚本以创建样本数据。这是约500 MB。

在MySQL中创建一个表并导入它。

由于似乎字符串数据比数字值更容易汇总,所以内容是数字的,但它们是可变的类型。

然后执行计算操作。

用BLOB类型做GROUPBY似乎很慢。

您可以在ClickHouse上使用MySQL数据,只需在下面的表格中指定它,而不是表名。

启动ClickHouse客户端并进行测试。

如果您在启动时不添加--multiline选项,则不会放置多行查询,因此请继续。

SELECT 

    data1, 

    COUNT(*)

FROM mysql('localhost','mikage','testdata','mikage','') 

GROUP BY data1

┌─data1─┬─COUNT()─┐

│    4│1999013│

│    3│1998988│

│    2│1999993│

│    5│2001553│

│    1│2000453│

└───────┴─────────┘

5 rows in set. Elapsed: 2.685 sec. Processed 10.00 million rows,40.00 MB(3.72 million rows/s.,14.90 MB/s.) 

SELECT 

    data2, 

    COUNT(*)

FROM mysql('localhost','mikage','testdata','mikage','') 

GROUP BY data2

┌─data2─┬─COUNT()─┐

│6    │  999786│

│8    │1001805│

│9    │1001438│

│3    │1000357│

│2    │1000648│

│4    │  998349│

│5    │  998889│

│10    │  999424│

│1    │1000530│

│7    │  998774│

└───────┴─────────┘

10 rows in set. Elapsed: 2.692 sec. Processed 10.00 million rows,101.00 MB(3.71 million rows/s.,37.52 MB/s.) 

SELECT 

    data3, 

    COUNT(*)

FROM mysql('localhost','mikage','testdata','mikage','') 

GROUP BY data3

-- 结果省略

100000 rows in set. Elapsed: 5.236 sec. Processed 10.00 million rows,138.89 MB(1.91 million rows/s.,26.52 MB/s.) 

SELECT 

    data1, 

    uniqExact(data5)

FROM mysql('localhost','mikage','testdata','mikage','') 

GROUP BY data1

┌─data1─┬─uniqExact(data5)─┐

│    4│          1811674│

│    3│          1812072│

│    2│          1812503│

│    5│          1814106│

│    1│          1813005│

└───────┴──────────────────┘

5 rows in set. Elapsed: 12.944 sec. Processed 10.00 million rows,198.89 MB(772.55 thousand rows/s.,15.37 MB/s.) 

-- ClickHouse有一个函数来粗略计算一个唯一的数字,所以让我们来计算一下。

在MySQL中,相当耗时的查询也可以在很短的时间内处理。

重复统计时,最好将数据复制到ClickHouse一次。

如果您复制它,后续查询将更快。

建议暂时使用StripeLog引擎。

如果您有一个主键,您可能还想要使用MergeTree表。这是在ClickHouse中最常用的引擎。

有必要用ORDER BY指定数据的排序顺序(即使有重复也没有问题)。

我会尝试以前的查询。以下是StripeLog引擎的测试结果。

测试耗时总结如下:

我认为这个错误很大,因为它在VM环境下仅测试了一次

从左边开始为,(1)MySQL中的时间 (2) ClickHouse从MySQL读取和处理数据的时间 (3) 在ClickHouse上处理复制数据的时间。

执行查询 MySQL处理时间 (秒) MySQL->ClickHouse处理时间 (秒) ClickHouse处理时间 (秒)

groupby(data1) 3.22 2.685 0.071

groupby(data2) 4.01 2.692 0.177

groupby(data3) 212.82 5.236 0.779

groupby(data1)+uniq(data5) 183.56 12.944 1.725

groupby(data1)+uniq(data5)概算 (无此功能) 6.026 0.285

当引用MySQL数据时,如果没有对应于ClickHouse的类型,它似乎是String类型。

没有相应的类型如Decimal类型,所以它也是String类型。

如果你想把它作为一个数值,精度将会改变,但是似乎有必要在MySQL端保持Double类型。

而且,Date和DateTime类型在MySQL和ClickHouse之间的范围也是不同的。

ClickHouse日期类型是1970 - 2038年之间。

如果有超出范围的数据,可能需要使其成为字符串类型,按年份,月份,日期分列,并将其作为数值复制。

参照源码如下:

https://github.com/yandex/ClickHouse/blob/9965f5e357f1be610608a51dc7a41f89c2321275/dbms/src/TableFunctions/TableFunctionMySQL.cpp#L37

MySQL类型 ClickHouse 类型 参考

tinyint    UInt8 / Int8

smallint    UInt16 / Int16

int / mediumint    UInt32 / Int32

bigint    UInt64 / Int64

float    Float32

double    Float64

dateDate    有可以表达的范围差异

datetime    DateTime有可以表达的范围差异

timestamp    DateTime

binaryFixed    String

除上述以外    String

以上是关于使用clickhouse和mysql查询时间对比的主要内容,如果未能解决你的问题,请参考以下文章

clickhouse

如何利用ClickHouse高速汇总查询MySQL数据

clickhouse数据压缩对比

15_clickhouse,MySQL引擎;MySQL和ClickHouse中数据类型的对应关系

ClickHouse 聚合 - 按天/月/年分组(时间戳)?

clickhouse与Mysql交互关联查询