使用clickhouse和mysql查询时间对比
Posted 八戒vs
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了使用clickhouse和mysql查询时间对比相关的知识,希望对你有一定的参考价值。
业务场景,对于数据量过大的数据统计,跑脚本会很吃力
先建立一个clickhouse的mysql引擎表关联本地mysql数据表,以下这个表会自动同步mysql主表数据
CREATE TABLE test_table (
id UInt32,
message String,
content String,
remark String,
order_id String,
user_id UInt32,
recharge_amount UInt32,
bonus Decimal(10,2),
create_time Datetime,
update_time Datetime
)
ENGINE = MySQL(\'127.0.0.1:3306\',\'you_database\',\'you_table\',\'you_user\',\'you_password\');
再在clickhouse建立一个mergetree引擎数据表:
CREATE TABLE my_test_table (
id UInt32,
message String,
content String,
remark String,
order_id String,
user_id UInt32,
recharge_amount UInt32,
bonus Decimal(10,2),
create_time Datetime,
update_time Datetime,
PRIMARY KEY (id)
)
ENGINE = MergeTree()
ORDER BY (id,create_time)
SETTINGS index_granularity = 8192;
将test_table 数据插入到my_test_table :
INSERT INTO my_test_table SELECT * FROM test_table;
如图是mysql执行,需要耗时22s
select sum(recharge_amount) from test_table;
如图是clickhouse执行,耗时75ms,连一秒都不到:
对比下来,都知道用什么了吧
如何利用ClickHouse高速汇总查询MySQL数据
参考技术A 直连到MySQL的功能现在已被添加到ClickHouse中。所以可以直接从ClickHouse查询MySQL表中的数据。ClickHouse是一个超高性能的海量数据快速查询的分布式实时处理平台,在数据汇总查询方面(如GROUP BY),ClickHouse的查询更快,因此通常情况下在MySQL上进行聚合。
下面是在自己的虚拟环境中做的测试记录。既然是虚拟环境非生产环境,请看参考应用级别,而不是严格的测试。
正确准备和测试大约1000万个数据项。
执行脚本以创建样本数据。这是约500 MB。
在MySQL中创建一个表并导入它。
由于似乎字符串数据比数字值更容易汇总,所以内容是数字的,但它们是可变的类型。
然后执行计算操作。
用BLOB类型做GROUPBY似乎很慢。
您可以在ClickHouse上使用MySQL数据,只需在下面的表格中指定它,而不是表名。
启动ClickHouse客户端并进行测试。
如果您在启动时不添加--multiline选项,则不会放置多行查询,因此请继续。
SELECT
data1,
COUNT(*)
FROM mysql('localhost','mikage','testdata','mikage','')
GROUP BY data1
┌─data1─┬─COUNT()─┐
│ 4│1999013│
│ 3│1998988│
│ 2│1999993│
│ 5│2001553│
│ 1│2000453│
└───────┴─────────┘
5 rows in set. Elapsed: 2.685 sec. Processed 10.00 million rows,40.00 MB(3.72 million rows/s.,14.90 MB/s.)
SELECT
data2,
COUNT(*)
FROM mysql('localhost','mikage','testdata','mikage','')
GROUP BY data2
┌─data2─┬─COUNT()─┐
│6 │ 999786│
│8 │1001805│
│9 │1001438│
│3 │1000357│
│2 │1000648│
│4 │ 998349│
│5 │ 998889│
│10 │ 999424│
│1 │1000530│
│7 │ 998774│
└───────┴─────────┘
10 rows in set. Elapsed: 2.692 sec. Processed 10.00 million rows,101.00 MB(3.71 million rows/s.,37.52 MB/s.)
SELECT
data3,
COUNT(*)
FROM mysql('localhost','mikage','testdata','mikage','')
GROUP BY data3
-- 结果省略
100000 rows in set. Elapsed: 5.236 sec. Processed 10.00 million rows,138.89 MB(1.91 million rows/s.,26.52 MB/s.)
SELECT
data1,
uniqExact(data5)
FROM mysql('localhost','mikage','testdata','mikage','')
GROUP BY data1
┌─data1─┬─uniqExact(data5)─┐
│ 4│ 1811674│
│ 3│ 1812072│
│ 2│ 1812503│
│ 5│ 1814106│
│ 1│ 1813005│
└───────┴──────────────────┘
5 rows in set. Elapsed: 12.944 sec. Processed 10.00 million rows,198.89 MB(772.55 thousand rows/s.,15.37 MB/s.)
-- ClickHouse有一个函数来粗略计算一个唯一的数字,所以让我们来计算一下。
在MySQL中,相当耗时的查询也可以在很短的时间内处理。
重复统计时,最好将数据复制到ClickHouse一次。
如果您复制它,后续查询将更快。
建议暂时使用StripeLog引擎。
如果您有一个主键,您可能还想要使用MergeTree表。这是在ClickHouse中最常用的引擎。
有必要用ORDER BY指定数据的排序顺序(即使有重复也没有问题)。
我会尝试以前的查询。以下是StripeLog引擎的测试结果。
测试耗时总结如下:
我认为这个错误很大,因为它在VM环境下仅测试了一次
从左边开始为,(1)MySQL中的时间 (2) ClickHouse从MySQL读取和处理数据的时间 (3) 在ClickHouse上处理复制数据的时间。
执行查询 MySQL处理时间 (秒) MySQL->ClickHouse处理时间 (秒) ClickHouse处理时间 (秒)
groupby(data1) 3.22 2.685 0.071
groupby(data2) 4.01 2.692 0.177
groupby(data3) 212.82 5.236 0.779
groupby(data1)+uniq(data5) 183.56 12.944 1.725
groupby(data1)+uniq(data5)概算 (无此功能) 6.026 0.285
当引用MySQL数据时,如果没有对应于ClickHouse的类型,它似乎是String类型。
没有相应的类型如Decimal类型,所以它也是String类型。
如果你想把它作为一个数值,精度将会改变,但是似乎有必要在MySQL端保持Double类型。
而且,Date和DateTime类型在MySQL和ClickHouse之间的范围也是不同的。
ClickHouse日期类型是1970 - 2038年之间。
如果有超出范围的数据,可能需要使其成为字符串类型,按年份,月份,日期分列,并将其作为数值复制。
参照源码如下:
https://github.com/yandex/ClickHouse/blob/9965f5e357f1be610608a51dc7a41f89c2321275/dbms/src/TableFunctions/TableFunctionMySQL.cpp#L37
MySQL类型 ClickHouse 类型 参考
tinyint UInt8 / Int8
smallint UInt16 / Int16
int / mediumint UInt32 / Int32
bigint UInt64 / Int64
float Float32
double Float64
dateDate 有可以表达的范围差异
datetime DateTime有可以表达的范围差异
timestamp DateTime
binaryFixed String
除上述以外 String
以上是关于使用clickhouse和mysql查询时间对比的主要内容,如果未能解决你的问题,请参考以下文章
15_clickhouse,MySQL引擎;MySQL和ClickHouse中数据类型的对应关系