Python数据可视化之matplotlib实践 源码 第二篇 精进 第五章
Posted Hello_BeautifulWorld
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python数据可视化之matplotlib实践 源码 第二篇 精进 第五章相关的知识,希望对你有一定的参考价值。
图 5.1
import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import AutoMinorLocator, MultipleLocator, FuncFormatter x=np.linspace(0.5, 3.5, 100) y=np.sin(x) fig=plt.figure(figsize=(8, 8)) ax=fig.add_subplot(111) ax.xaxis.set_major_locator(MultipleLocator(1.0)) ax.yaxis.set_major_locator(MultipleLocator(1.0)) ax.xaxis.set_minor_locator(AutoMinorLocator(4)) ax.yaxis.set_minor_locator(AutoMinorLocator(4)) def minor_tick(x, pos): if not x%1.0: return "" return "%.2f"%x ax.xaxis.set_minor_formatter(FuncFormatter(minor_tick)) ax.tick_params("y", which=\'major\',length=15, width=2.0, colors=\'r\') ax.tick_params(which=\'minor\', length=5, width=1.0, labelsize=10, labelcolor=\'0.25\') ax.set_xlim(0, 4) ax.set_ylim(0, 2) ax.plot(x, y, c=(0.25, 0.25, 1.00), lw=2, zorder=10) # ax.plot(x, y, c=(0.25, 0.25, 1.00), lw=2, zorder=0) ax.grid(linestyle=\'-\', linewidth=0.5, color=\'r\', zorder=0) # ax.grid(linestyle=\'-\', linewidth=0.5, color=\'r\', zorder=10) # ax.grid(linestyle=\'--\', linewidth=0.5, color=\'0.25\', zorder=0) plt.show()
-------------------------------------------------------------------------------------
图 5.2
import matplotlib.pyplot as plt import numpy as np fig=plt.figure(facecolor=(1.0, 1.0, 0.9412)) ax=fig.add_axes([0.1, 0.4, 0.5, 0.5]) for ticklabel in ax.xaxis.get_ticklabels(): ticklabel.set_color("slateblue") ticklabel.set_fontsize(18) ticklabel.set_rotation(30) for ticklabel in ax.yaxis.get_ticklabels(): ticklabel.set_color("lightgreen") ticklabel.set_fontsize(20) ticklabel.set_rotation(2) plt.show()
-------------------------------------------------------------------------------------
图 5.3
import matplotlib.pyplot as plt import numpy as np from calendar import month_name, day_name from matplotlib.ticker import FormatStrFormatter fig=plt.figure() ax=fig.add_axes([0.2, 0.2, 0.7, 0.7]) x=np.arange(1, 8, 1) y=2*x ax.plot(x, y, ls=\'-\', lw=2, color=\'orange\', marker=\'o\', ms=20, mfc=\'c\', mec=\'r\') ax.yaxis.set_major_formatter(FormatStrFormatter(r"$\\yen%1.1f$")) plt.xticks(x, day_name[0:7], rotation=20) ax.set_xlim(0, 8) ax.set_ylim(0, 18) plt.show()
-------------------------------------------------------------------------------------
图 5.4
import matplotlib.pyplot as plt import numpy as np x=np.linspace(0.5, 3.5, 100) y=np.sin(x) fig=plt.figure(figsize=(8, 8)) ax=fig.add_subplot(111) ax.plot(x, y, c=\'b\', ls=\'-\', lw=2) ax.annotate("maximum", xy=(np.pi/2, 1.0), xycoords=\'data\', xytext=((np.pi/2)+0.15, 0.8), textcoords="data", weight="bold", color=\'r\', arrowprops=dict(arrowstyle=\'->\', connectionstyle=\'arc3\', color=\'r\')) ax.text(2.8, 0.4, "$y=\\sin(x)$", fontsize=20, color=\'b\', bbox=dict(facecolor=\'y\', alpha=0.5)) plt.show()
-------------------------------------------------------------------------------------
图 5.5
import matplotlib.pyplot as plt import numpy as np x=np.linspace(0.0, 10, 40) y=np.random.randn(40) plt.plot(x, y, ls=\'-\', lw=2, marker=\'o\', ms=20, mfc=\'orange\', alpha=0.6) plt.grid(ls=\':\', color=\'gray\', alpha=0.5) plt.text(6, 0, \'Matplotlib\', size=30, rotation=30.0, bbox=dict(boxstyle=\'round\', ec=\'#8968CD\', fc=\'#FFE1FF\')) plt.show()
-------------------------------------------------------------------------------------
图 5.6
import matplotlib.pyplot as plt import numpy as np x=np.linspace(0.0, 10, 40) y=np.random.randn(40) plt.plot(x, y, ls=\'-\', lw=2, marker=\'o\', ms=20, mfc=\'orange\', alpha=0.6) plt.grid(ls=\':\', color=\'gray\', alpha=0.5) plt.text(1, 2, \'Matplotlib\', size=50, alpha=0.5) plt.show()
-------------------------------------------------------------------------------------
图 5.7
import matplotlib.pyplot as plt import numpy as np x=np.linspace(0, 10, 2000) y=np.sin(x)*np.cos(x) fig=plt.figure() ax=fig.add_subplot(111) ax.plot(x, y, ls=\'-\', lw=2) bbox=dict(boxstyle=\'round\', fc=\'#7EC0EE\', ec=\'#9B30FF\') arrowprops=dict(arrowstyle=\'-|>\', color=\'r\', connectionstyle=\'angle, angleA=0, angleB=90, rad=10\') ax.annotate("single point", (5, np.sin(5)*np.cos(5)), xytext=(3, np.sin(3)*np.cos(3)), fontsize=12, color=\'r\', bbox=bbox, arrowprops=arrowprops) ax.grid(ls=":", color=\'gray\', alpha=0.6) plt.show()
-------------------------------------------------------------------------------------
图 5.8
import matplotlib.pyplot as plt import numpy as np x=np.linspace(0, 10, 2000) y=np.sin(x) fig=plt.figure() ax=fig.add_subplot(111) ax.plot(x, y, ls=\'-\', lw=2) ax.set_ylim(-1.5, 1.5) arrowprops=dict(arrowstyle=\'-|>\', color=\'r\') ax.annotate("", (3*np.pi/2, np.sin(3*np.pi/2)+0.15), xytext=(np.pi/2, np.sin(np.pi/2)+0.15), color=\'r\', arrowprops=arrowprops) ax.arrow(0.0, -0.4, np.pi/2, 1.2, head_width=0.05, head_length=0.1, fc=\'g\', ec=\'g\') ax.grid(ls=\':\', color=\'gray\', alpha=0.6) plt.show()
-------------------------------------------------------------------------------------
图 5.9
import matplotlib.pyplot as plt import matplotlib as mpl import numpy as np from matplotlib.sankey import Sankey mpl.rcParams["font.sans-serif"]=[\'FangSong\'] mpl.rcParams[\'axes.unicode_minus\']=False flows=[0.2, 0.1, 0.4, 0.3, -0.6, -0.05, -0.15, -0.2] labels=[\'\', \'\', \'\', \'\', \'family\', \'trip\', \'education\', \'sport\'] orientations=[1, 1, 0, -1, 1, -1, 1, 0] sankey=Sankey() sankey.add(flows=flows, labels=labels, orientations=orientations, color=\'c\', fc=\'lightgreen\', patchlabel=\'Life Cost\', alpha=0.7) diagrams=sankey.finish() diagrams[0].texts[4].set_color(\'r\') diagrams[0].texts[4].set_weight(\'bold\') diagrams[0].text.set_fontsize(20) diagrams[0].text.set_fontweight(\'bold\') plt.title("日常生活的成本开支的流量图") plt.show()
-------------------------------------------------------------------------------------
图 5.10
import matplotlib.pyplot as plt import matplotlib.patheffects as pes import numpy as np x=np.linspace(0.5, 3.5, 100) y=np.sin(x) fontsize=23 plt.plot(x, y, ls=\'--\', lw=2) title=\'$y=\\sin({x})$\' xaxis_label=\'$x\\_axis$\' yaxis_label="$y\\_axis$" title_text_obj=plt.title(title, fontsize=fontsize, va=\'bottom\') xaxis_label_text_obj=plt.xlabel(xaxis_label, fontsize=fontsize-3, alpha=1.0) yaxis_label_text_obj=plt.ylabel(yaxis_label, fontsize=fontsize-3, alpha=1.0) title_text_obj.set_path_effects([pes.withSimplePatchShadow()]) pe=pes.withSimplePatchShadow(offset=(1, -1), shadow_rgbFace=\'r\', alpha=0.3) xaxis_label_text_obj.set_path_effects([pe]) yaxis_label_text_obj.set_path_effects([pe]) plt.show()
-------------------------------------------------------------------------------------
图 5.11
import matplotlib.pyplot as plt import numpy as np x=np.linspace(0.5, 3.5, 100) y=np.sin(x) fig=plt.figure(figsize=(8, 8)) ax=fig.add_subplot(111) box=dict(facecolor=\'#6959CD\', pad=2, alpha=0.4) ax.plot(x, y, c=\'b\', ls=\'--\', lw=2) title=\'$y=\\sin({x})$\' xaxis_label=\'$x\\_axis$\' yaxis_label="$y\\_axis$" ax.set_xlabel(xaxis_label, fontsize=18, bbox=box) ax.set_ylabel(yaxis_label, fontsize=18, bbox=box) ax.set_title(title, fontsize=23, va=\'bottom\') ax.yaxis.set_label_coords(-0.08, 0.5) ax.xaxis.set_label_coords(1.0, -0.05) ax.grid(ls=\'-.\', lw=1, color=\'gray\', alpha=0.5) plt.show()
-------------------------------------------------------------------------------------
以上是关于Python数据可视化之matplotlib实践 源码 第二篇 精进 第五章的主要内容,如果未能解决你的问题,请参考以下文章
Python数据可视化之matplotlib实践 源码 第一篇 入门 第三章
Python数据可视化之matplotlib实践 源码 第一篇 入门 第三章