bulkWrite探秘
Posted freephp
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了bulkWrite探秘相关的知识,希望对你有一定的参考价值。
MongoDB有很多有趣的内置方法,其中为了批量处理一些写入操作,并且可以按照一定顺序执行,自从3.2版本之后提供了该批量方法:bulkWrite。
它的语法很简单:
db.collection.bulkWrite(
[ <operation 1>, <operation 2>, ... ],
writeConcern : <document>,
ordered : <boolean>
)
分别解释一下上述参数,
opertion 1, opertion 2:表示写入操作对象,例如插入数据的操作:
insertOne: document: _id: 3, type: "spider", size: "medium", price: 6 ,
writeConcern:它表示写入设置,当有多个MongoDB节点(比如三个节点,其中一个primary节点)的时候,我们会定义什么才算是写入成功。从5.0版本之后,默认是w: ‘majority’,也就是当大多数节点写入完成,则会返回写入结果。比如有三个节点,那么超过一半,也就是2个或者2个以上节点写入成功,则该写入操作才能算成功。
ordered:这个参数为true的时候代表这些写入操作是严格按照顺序串行执行的,也就是先执行operation 1,然后执行operation 2。并且在这个过程中如果有一个操作发生错误,则MongoDB返回结果并不执行剩余的写操作。
当odererd是false,代表这些写操作可以无序地并发执行,当有一个写操作发生错误,则MongoDB会继续执行完其他操作,最后返回错误和异常。
所以可以看出有序方式bulkWrite会比无序方式更慢。
MongoDB与MySQL效率对比
测试环境:win7旗舰版、16G内存、i3处理器、MongoDB3.0.2、mysql5.0
一、MongoDB批量操作
MongoDB对数据的操作分为Read Operations和Write Operations,Read Operations包含查询操作,Write Operations包含删除、插入、替换、更新几种操作。MongoDB提供客户端用bulk方式执行Write Operations,也就是批量写操作。在java driver中,对应MongoCollection的bulkWrite()方法,先来看下这个方法签名:
BulkWriteResult com.mongodb.client.MongoCollection.bulkWrite(List<? extends WriteModel<? extends Document>> requests)
这个方法要求传入一个List集合,集合中的元素类型为WriteModel,它表示一个可用于批量写操作的基类模型,它有以下几个子类DeleteManyModel、DeleteOneModel、 InsertOneModel、ReplaceOneModel、 UpdateManyModel、UpdateOneModel,从名字可以看出来它对应了删除、插入、替换、更新几种操作。该方法返回一个BulkWriteResult对象,代表一个成功的批量写操作结果,封装了操作结果的状态信息,如插入、更新、删除记录数等。
1、插入操作
(1)、批量插入
代码如下,该方法接收一个包含要进行插入的Document对象的集合参数,遍历集合,使用Document构造InsertOneModel对象,每个InsertOneModel实例代表一个插入单个Document的操作,然后将该实例添加List集合中,调用bulkWrite()方法,传入存储所有插入操作的List集合完成批量插入。
public void bulkWriteInsert(List<Document> documents){
List<WriteModel<Document>> requests = new ArrayList<WriteModel<Document>>();
for (Document document : documents) {
//构造插入单个文档的操作模型
InsertOneModel<Document> iom = new InsertOneModel<Document>(document);
requests.add(iom);
}
BulkWriteResult bulkWriteResult = collection.bulkWrite(requests);
System.out.println(bulkWriteResult.toString());
}
测试:下面通过一个main函数测试下。首先构造10万个Product实体对象,使用一个工具类将其转换成json字符串,然后解析成Document对象,保存到一个list集合中,然后调用上面编写的方法测试10万个对象插入时间。
TestMongoDB instance = TestMongoDB.getInstance();
ArrayList<Document> documents = new ArrayList<Document>();
for (int i = 0; i < 100000; i++) {
Product product = new Product(i,"书籍","追风筝的人",22.5);
//将java对象转换成json字符串
String jsonProduct = JsonParseUtil.getJsonString4JavaPOJO(product);
//将json字符串解析成Document对象
Document docProduct = Document.parse(jsonProduct);
documents.add(docProduct);
}
System.out.println("开始插入数据。。。");
long startInsert = System.currentTimeMillis();
instance.bulkWriteInsert(documents);
System.out.println("插入数据完成,共耗时:"+(System.currentTimeMillis() - startInsert)+"毫秒");
结果:1560毫秒,多次测试基本在1.5秒左右
(2)、逐条插入
下面再通过非批量插入10万个数据对比下,方法如下:
public void insertOneByOne(List<Document> documents) throws ParseException{
for (Document document : documents){
collection.insertOne(document);
}
}
测试:10万条数据
System.out.println("开始插入数据。。。");
long startInsert = System.currentTimeMillis();
instance.insertOneByOne(documents);
System.out.println("插入数据完成,共耗时:"+(System.currentTimeMillis() - startInsert)+"毫秒");
结果:12068毫秒,差距非常大。由此可见,MongoDB批量插入比逐条数据插入效率提高了非常多。
补充:
MongoCollection的insertMany()方法和bulkWrite()方法是等价的,测试时间差不多,不再贴图。
public void insertMany(List<Document> documents) throws ParseException{
//和bulkWrite()方法等价
collection.insertMany(documents);
}
2、删除操作
(1)、批量删除
掌握了批量插入,批量删除就是依葫芦画瓢了。构造DeleteOneModel需要一个Bson类型参数,代表一个删除操作,这里使用了Bson类的子类Document。重点来了,这里的删除条件使用文档的id字段,该字段在文档插入数据库后自动生成,没插入数据库前document.get("id")为null,如果使用其他条件比如productId,那么要在文档插入到collection后在productId字段上添加索引
collection.createIndex(new Document("productId", 1));
因为随着collection数据量的增大,查找将越耗时,添加索引是为了提高查找效率,进而加快删除效率。另外,值得一提的是DeleteOneModel表示至多删除一条匹配条件的记录,DeleteManyModel表示删除匹配条件的所有记录。为了防止一次删除多条记录,这里使用DeleteOneModel,保证一个操作只删除一条记录。当然这里不可能匹配多条记录,因为_id是唯一的。
public void bulkWriteDelete(List<Document> documents){
List<WriteModel<Document>> requests = new ArrayList<WriteModel<Document>>();
for (Document document : documents) {
//删除条件
Document queryDocument = new Document("_id",document.get("_id"));
//构造删除单个文档的操作模型,
DeleteOneModel<Document> dom = new DeleteOneModel<Document>(queryDocument);
requests.add(dom);
}
BulkWriteResult bulkWriteResult = collection.bulkWrite(requests);
System.out.println(bulkWriteResult.toString());
}
测试:10万条数据
System.out.println("开始删除数据。。。");
long startDelete = System.currentTimeMillis();
instance.bulkWriteDelete(documents);
System.out.println("删除数据完成,共耗时:"+(System.currentTimeMillis() - startDelete)+"毫秒");
结果:2251毫秒
(2)、逐条删除
来看看在非批量下的删除
public void deleteOneByOne(List<Document> documents){
for (Document document : documents) {
Document queryDocument = new Document("_id",document.get("_id"));
DeleteResult deleteResult = collection.deleteOne(queryDocument);
}
}
测试:10万条数据
System.out.println("开始删除数据。。。");
long startDelete = System.currentTimeMillis();
instance.deleteOneByOne(documents);
System.out.println("删除数据完成,共耗时:"+(System.currentTimeMillis() - startDelete)+"毫秒");
结果:12765毫秒,比批量删除效率低很多
3、更新操作
(1)、批量更新
再来看看批量更新,分UpdateOneModel和UpdateManyModel两种,区别是前者更新匹配条件的一条记录,后者更新匹配条件的所有记录。对于ReplaceOneModel,表示替换操作,这里也归为更新,现在以UpdateOneModel为例进行讲解。UpdateOneModel构造方法接收3个参数,第一个是查询条件,第二个参数是要更新的内容,第三个参数是可选的UpdateOptions,不填也会自动帮你new一个,代表批量更新操作未匹配到查询条件时的动作,它的upser属性值默认false,什么都不干,true时表示将一个新的Document插入数据库,这个新的Document是查询Document和更新Document的结合,但如果是替换操作,这个新的Document就是这个替换Document。
这里会有个疑惑:这和匹配到查询条件后执行替换操作结果不一样吗?区别在于id字段,未匹配查询条件时插入的新的Document的id是新的,而成功执行替换操作,_id是原先旧的。
public void bulkWriteUpdate(List<Document> documents){
List<WriteModel<Document>> requests = new ArrayList<WriteModel<Document>>();
for (Document document : documents) {
//更新条件
Document queryDocument = new Document("_id",document.get("_id"));
//更新内容,改下书的价格
Document updateDocument = new Document("$set",new Document("price","30.6"));
//构造更新单个文档的操作模型
UpdateOneModel<Document> uom = new UpdateOneModel<Document>(queryDocument,updateDocument,new UpdateOptions().upsert(false));
//UpdateOptions代表批量更新操作未匹配到查询条件时的动作,默认false,什么都不干,true时表示将一个新的Document插入数据库,他是查询部分和更新部分的结合
requests.add(uom);
}
BulkWriteResult bulkWriteResult = collection.bulkWrite(requests);
System.out.println(bulkWriteResult.toString());
}
测试:10万条数据
System.out.println("开始更新数据。。。");
long startUpdate = System.currentTimeMillis();
instance.bulkWriteUpdate(documents);
System.out.println("更新数据完成,共耗时:"+(System.currentTimeMillis() - startUpdate)+"毫秒");
结果:3198毫秒
(2)、逐条更新
对比非批量下的更新
public void updateOneByOne(List<Document> documents){
for (Document document : documents) {
Document queryDocument = new Document("_id",document.get("_id"));
Document updateDocument = new Document("$set",new Document("price","30.6"));
UpdateResult UpdateResult = collection.updateOne(queryDocument, updateDocument);
}
}
测试:10万条数据
System.out.println("开始更新数据。。。");
long startUpdate = System.currentTimeMillis();
instance.updateOneByOne(documents);
System.out.println("更新数据完成,共耗时:"+(System.currentTimeMillis() - startUpdate)+"毫秒");
结果:13979毫秒,比批量更新效率低很多
4、混合批量操作
bulkWrite()方法可以对不同类型的写操作进行批量处理,代码如下:
public void bulkWriteMix(){
List<WriteModel<Document>> requests = new ArrayList<WriteModel<Document>>();
InsertOneModel<Document> iom = new InsertOneModel<Document>(new Document("name","kobe"));
UpdateManyModel<Document> umm = new UpdateManyModel<Document>(new Document("name","kobe"),
new Document("$set",new Document("name","James")),new UpdateOptions().upsert(true));
DeleteManyModel<Document> dmm = new DeleteManyModel<Document>(new Document("name","James"));
requests.add(iom);
requests.add(umm);
requests.add(dmm);
BulkWriteResult bulkWriteResult = collection.bulkWrite(requests);
System.out.println(bulkWriteResult.toString());
}
注意:updateMany()、deleteMany()两个方法和insertMany()不同,它俩不是批量操作,而是代表更新(删除)匹配条件的所有数据。
二、与MySQL性能对比
1、插入操作
(1)、批处理插入
与MongoDB一样,也是插入Product实体对象,代码如下
public void insertBatch(ArrayList<Product> list) throws Exception{
Connection conn = DBUtil.getConnection();
try {
PreparedStatement pst = conn.prepareStatement("insert into t_product value(?,?,?,?)");
int count = 1;
for (Product product : list) {
pst.setInt(1, product.getProductId());
pst.setString(2, product.getCategory());
pst.setString(3, product.getName());
pst.setDouble(4, product.getPrice());
pst.addBatch();
if(count % 1000 == 0){
pst.executeBatch();
pst.clearBatch();//每1000条sql批处理一次,然后置空PreparedStatement中的参数,这样也能提高效率,防止参数积累过多事务超时,但实际测试效果不明显
}
count++;
}
conn.commit();
} catch (SQLException e) {
e.printStackTrace();
}
DBUtil.closeConnection(conn);
}
JDBC默认自动提交事务,切记在获取连接后添加下面一行代码,关闭事务自动提交。
connection.setAutoCommit(false);
测试:10万条数据
public static void main(String[] args) throws Exception {
TestMysql test = new TestMysql();
ArrayList<Product> list = new ArrayList<Product>();
for (int i = 0; i < 1000; i++) {
Product product = new Product(i, "书籍", "追风筝的人", 20.5);
list.add(product);
}
System.out.println("MYSQL开始插入数据。。。");
long insertStart = System.currentTimeMillis();
test.insertBatch(list);
System.out.println("MYSQL插入数据完成,共耗时:"+(System.currentTimeMillis() - insertStart)+"毫秒");
}
结果:7389毫秒,多次测试基本7秒左右
(2)、逐条插入
再来看看mysql逐条插入,代码如下:
public void insertOneByOne(ArrayList<Product> list) throws Exception{
Connection conn = DBUtil.getConnection();
try {
for (Product product : list) {
PreparedStatement pst = conn.prepareStatement("insert into t_product value(?,?,?,?)");
pst.setInt(1, product.getProductId());
pst.setString(2, product.getCategory());
pst.setString(3, product.getName());
pst.setDouble(4, product.getPrice());
pst.executeUpdate();
//conn.commit();//加上这句每次插入都提交事务,结果将是非常耗时
}
conn.commit();
} catch (SQLException e) {
e.printStackTrace();
}
DBUtil.closeConnection(conn);
}
测试:10万条记录
System.out.println("MYSQL开始插入数据。。。");
long insertStart = System.currentTimeMillis();
test.insertOneByOne(list);
System.out.println("MYSQL插入数据完成,共耗时:"+(System.currentTimeMillis() - insertStart)+"毫秒");
结果:8921毫秒,基本比批量慢1秒多。
2、删除操作
(1)、批处理删除
删除的where条件是productId,这里在建表的时候没有添加主键,删除异常的慢,查了半天不知道什么原因。切记添加主键,主键默认有索引,所有能更快匹配到记录。
public void deleteBatch(ArrayList<Product> list) throws Exception{
Connection conn = DBUtil.getConnection();
try {
PreparedStatement pst = conn.prepareStatement("delete from t_product where id = ?");//按主键查,否则全表遍历很慢
int count = 1;
for (Product product : list) {
pst.setInt(1, product.getProductId());
pst.addBatch();
if(count % 1000 == 0){
pst.executeBatch();
pst.clearBatch();
}
count++;
}
conn.commit();
} catch (SQLException e) {
e.printStackTrace();
}
DBUtil.closeConnection(conn);
}
测试:10万条数据
System.out.println("MYSQL开始删除数据。。。");
long deleteStart = System.currentTimeMillis();
test.deleteBatch(list);
System.out.println("MYSQL删除数据完成,共耗时:"+(System.currentTimeMillis() - deleteStart)+"毫秒");
结果:7936毫秒
(2)、逐条删除
代码如下
public void deleteOneByOne(ArrayList<Product> list) throws Exception{
Connection conn = DBUtil.getConnection();
PreparedStatement pst = null;
try {
for (Product product : list) {
pst = conn.prepareStatement("delete from t_product where id = ?");
pst.setInt(1, product.getProductId());
pst.executeUpdate();
//conn.commit();//加上这句每次插入都提交事务,结果将是非常耗时
}
conn.commit();
} catch (SQLException e) {
e.printStackTrace();
}
DBUtil.closeConnection(conn);
}
测试:10万条数据
System.out.println("MYSQL开始删除数据。。。");
long deleteStart = System.currentTimeMillis();
test.deleteOneByOne(list);
System.out.println("MYSQL删除数据完成,共耗时:"+(System.currentTimeMillis() - deleteStart)+"毫秒");
结果:8752毫秒,比批处理删除慢一秒左右
3、更新操作
(1)、批处理更新
代码如下
public void updateBatch(ArrayList<Product> list) throws Exception{
Connection conn = DBUtil.getConnection();
try {
PreparedStatement pst = conn.prepareStatement("update t_product set price=31.5 where id=?");
int count = 1;
for (Product product : list) {
pst.setInt(1, product.getProductId());
pst.addBatch();
if(count % 1000 == 0){
pst.executeBatch();
pst.clearBatch();//每1000条sql批处理一次,然后置空PreparedStatement中的参数,这样也能提高效率,防止参数积累过多事务超时,但实际测试效果不明显
}
count++;
}
conn.commit();
} catch (SQLException e) {
e.printStackTrace();
}
DBUtil.closeConnection(conn);
}
测试:10万条数据
System.out.println("MYSQL开始更新数据。。。");
long updateStart = System.currentTimeMillis();
test.updateBatch(list);
System.out.println("MYSQL更新数据完成,共耗时:"+(System.currentTimeMillis() - updateStart)+"毫秒");
结果:8611毫秒
(2)、逐条更新
代码如下
public void updateOneByOne(ArrayList<Product> list) throws Exception{
Connection conn = DBUtil.getConnection();
try {
for (Product 以上是关于bulkWrite探秘的主要内容,如果未能解决你的问题,请参考以下文章
[pyMongo]insert_many的Bulkwrite实现机制