Python之进程 - multiprocessing模块
Posted 小牧牧
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python之进程 - multiprocessing模块相关的知识,希望对你有一定的参考价值。
? 我们已经了解了,运行中的程序就是一个进程。所有的进程都是通过它的父进程来创建的。因此,运行起来的python程序也是一个进程,那么我们也可以在程序中再创建进程。多个进程可以实现并发效果,也就是说,当我们的程序中存在多个进程的时候,在某些时候,就会让程序的执行速度变快。以我们之前所学的知识,并不能实现创建进程这个功能,所以我们就需要借助python中强大的模块。
? 仔细说来,multiprocess
不是一个模块而是python中一个操作、管理进程的包
。 之所以叫multi
是取自multiple
的多功能的意思,在这个包中几乎包含了和进程有关的所有子模块。由于提供的子模块非常多,为了方便大家归类记忆,我将这部分大致分为四个部分:创建进程部分
,进程同步部分
,进程池部分
,进程之间数据共享
。重点强调:进程没有任何共享状态,进程修改的数据,改动仅限于该进程内,但是通过一些特殊的方法,可以实现进程之间数据的共享。
一、process模块介绍
process模块是一个创建进程的模块,借助这个模块,就可以完成进程的创建。
使用:
Process([group [, target [, name [, args [, kwargs]]]]]),
由该类实例化得到的对象,表示一个子进程中的任务(尚未启动)
强调:
1. 需要使用关键字的方式来指定参数
2. args指定的为传给target函数的位置参数,是一个元组形式,必须有逗号
1.1 进程创建的第一种方法
程序示例:
from multiprocessing import Process
def func():
print(12345)
if __name__ == '__main__':
p = Process(target=func,)
p.start()
print('*'*10)
功能讲解
if __name__ == '__main__':
# windows 下才需要写这个,这和系统创建进程的机制有关系,不用深究,记着windows下要写就好啦
#首先我运行当前这个test.py文件,运行这个文件的程序,那么就产生了进程,这个进程我们称为主进程
p = Process(target=func,) #将函数注册到一个进程中,p是一个进程对象,此时还没有启动进程,只是创建了一个进程对象。并且func是不加括号的,因为加上括号这个函数就直接运行了对吧。
p.start() #告诉操作系统,给我开启一个进程,func这个函数就被我们新开的这个进程执行了,而这个进程是我主进程运行过程中创建出来的,所以称这个新创建的进程为主进程的子进程,而主进程又可以称为这个新进程的父进程。
#而这个子进程中执行的程序,相当于将现在这个test.py文件中的程序copy到一个你看不到的python文件中去执行了,就相当于当前这个文件,被另外一个py文件import过去并执行了。
#start并不是直接就去执行了,我们知道进程有三个状态,进程会进入进程的三个状态,就绪,(被调度,也就是时间片切换到它的时候)执行,阻塞,并且在这个三个状态之间不断的转换,等待cpu执行时间片到了。
print('*' * 10) #这是主进程的程序,上面开启的子进程的程序是和主进程的程序同时运行的,我们称为异步
上面我们说过,我们通过主进程创建的子进程是异步执行的,那么我们就验证一下,并且看一下子进程和主进程(也就是父进程)的ID号(讲一下pid
和ppid
,使用pycharm举例),来看看是否是父子关系。
from multiprocessing import Process
import time
import os
def func():
print('aaaaa')
time.sleep(1)
print('该子进程ID:', os.getpid()) #获取自己的进程ID号
print('该子进程的父进程ID:', os.getppid()) #获取自己进程的父进程ID
print(12345)
if __name__ == '__main__':
p = Process(target=func,)
p.start()
print('*'*10)
print('父进程ID>>>', os.getpid())
print('父进程的父进程ID>>>', os.getpid())
打印结果:
**********
父进程ID>>> 57235
父进程的父进程ID>>> 57235
aaaaa
该子进程ID: 57236
该子进程的父进程ID: 57235
12345
# 首先打印出来了主进程的程序,然后打印的是子进程的,也就是子进程是异步执行的,相当于主进程和子进程同时运行着,如果是同步的话,我们先执行的是func(),然后再打印主进程最后的10个*号。
一个进程的生命周期:
如果子进程的运行时间长,那么等到子进程执行结束程序才结束,如果主进程的执行时间长,那么主进程执行结束程序才结束,实际上我们在子进程中打印的内容是在主进程的执行结果中看不出来的,但是pycharm帮我们做了优化,因为它会识别到你这是开的子进程,帮你把子进程中打印的内容打印到了显示台上。
? 如果说一个主进程运行完了之后,我们把pycharm关了,但是子进程还没有执行结束,那么子进程还存在吗?这要看你的进程是如何配置的,如果说我们没有配置说我主进程结束,子进程要跟着结束,那么主进程结束的时候,子进程是不会跟着结束的,他会自己执行完,如果我设定的是主进程结束,子进程必须跟着结束,那么就不会出现单独的子进程(孤儿进程)了,具体如何设置,看下面的守护进程的讲解。比如说,我们将来启动项目的时候,可能通过cmd来启动,那么我cmd关闭了你的项目就会关闭吗,不会的,因为你的项目不能停止对外的服务,对吧。
1.2 Process类中参数
的介绍:
参数介绍:
1 group参数未使用,值始终为None
2 target表示调用对象,即子进程要执行的任务
3 args表示调用对象的位置参数元组,args=(1,2,'egon',)
4 kwargs表示调用对象的字典,kwargs={'name':'egon','age':18}
5 name为子进程的名称
给要执行的函数传参数:
def func(x, y):
print(x)
time.sleep(1)
print(y)
if __name__ == '__main__':
p = Process(target=func, args=('hello', 'world')) # 这是func需要接收的参数的传送方式。
p.start()
print('父进程执行结束!')
# 执行结果:
父进程执行结束!
hello
world
1.3 Process类中各方法
的介绍
p.start()
:启动进程,并调用该子进程中的p.run()p.run()
:进程启动时运行的方法,正是它去调用target指定的函数,我们自定义类的类中一定要实现该方法p.terminate()
:强制终止进程p,不会进行任何清理操作,如果p创建了子进程,该子进程就成了僵尸进程,使用该方法需要特别小心这种情况。如果p还保存了一个锁那么也将不会被释放,进而导致死锁p.is_alive()
:如果p仍然运行,返回Truep.join([timeout])
:主线程等待p终止(强调:是主线程处于等的状态,而p是处于运行的状态)。timeout
是可选的超时时间,需要强调的是,p.join
只能join
住start
开启的进程,而不能join
住run开启的进程
join方法的例子
让主进程加上join的地方等待(也就是阻塞住),等待子进程执行完之后,再继续往下执行我的主进程,好多时候,我们主进程需要子进程的执行结果,所以必须要等待。join感觉就像是将子进程和主进程拼接起来一样,将异步改为同步执行。
from multiprocessing import Process
import time
def func(x, y):
print(x)
time.sleep(1)
print(y)
if __name__ == '__main__':
p = Process(target=func, args=('hello', 'world')) # 这是func需要接收的参数的传送方式。
p.start()
print("我这里是异步的!")
p.join() # 只有在join的地方才会阻塞住,将子进程和主进程之间的异步改为同步
print('父进程执行结束!')
# 执行结果
我这里是异步的!
hello
world
父进程执行结束!
开启多个进程
for循环。并且我有个需求就是说,所有的子进程异步执行,然后所有的子进程全部执行完之后,我再执行主进程,怎么搞?看代码
1.4 Process类中自带封装的各属性
的介绍
p.daemon
:默认值为False,如果设为True
,代表p为后台运行的守护进程,当p的父进程终止时,p也随之终止,并且设定为True
后,p不能创建自己的新进程,必须在p.start()
之前设置p.name
:进程的名称p.pid
:进程的pidp.exitcode
:进程在运行时为None
、如果为–N
,表示被信号N结束(了解即可)p.authkey
:进程的身份验证键,默认是由os.urandom()
随机生成的32字符的字符串。这个键的用途是为涉及网络连接的底层进程间通信提供安全性,这类连接只有在具有相同的身份验证键时才能成功(了解即可)
二、process类的使用
注意:
Since Windows has no fork, the multiprocessing module starts a new Python process and imports the calling module.
If Process() gets called upon import, then this sets off an infinite succession of new processes (or until your machine runs out of resources).
This is the reason for hiding calls to Process() inside
if __name__ == "__main__"
since statements inside this if-statement will not get called upon import.
由于Windows没有fork,多处理模块启动一个新的Python进程并导入调用模块。
如果在导入时调用Process(),那么这将启动无限继承的新进程(或直到机器耗尽资源)。
这是隐藏对Process()内部调用的原,使用if __name__ == “__main __”,这个if语句中的语句将不会在导入时被调用。
在windows中Process()
必须放到 if __name__ == '__main__':
下
2.1 进程的创建第二种方法(继承)
from multiprocessing import Process
import os
class MyProcess(Process): # 自己写一个类,继承Process类
# 我们通过init方法可以传参数,如果只写一个run方法,那么没法传参数,因为创建对象的是传参就是在init方法里面
def __init__(self, person):
super().__init__()
self.person = person
def run(self):
print(os.getpid())
print(self.pid)
print(self.pid)
print('%s 正在和女主播聊天' % self.person)
# def start(self):
# #如果你非要写一个start方法,可以这样写,并且在run方法前后,可以写一些其他的逻辑
# self.run()
if __name__ == '__main__':
p1 = MyProcess('Jedan')
p2 = MyProcess('太白')
p3 = MyProcess('alexDSB')
p1.start() # start内部会自动调用run方法
p2.start()
# p2.run()
p3.start()
p1.join()
p2.join()
p3.join()
运行结果:
57683
57683
57683
Jedan 正在和女主播聊天
57684
57684
57684
太白 正在和女主播聊天
57685
57685
57685
alexDSB 正在和女主播聊天
2.2 进程之间的数据隔离
进程之间的数据是隔离的,也就是数据不共享,下面的是验证:
from multiprocessing import Process
n = 100
# 首先定义一个全局变量,在windows系统中应该把全局变量定义在if __name__ == '__main__'之上
def work():
global n
n = 0
print('子进程内: ', n)
if __name__ == '__main__':
p = Process(target=work,)
p.start()
p.join() # 等待子进程执行完毕,如果数据共享的话,我子进程是不是通过global将n改为0了,但是你看打印结果,主进程在子进程执行结束之后,仍然是n=100,子进程n=0,说明子进程对n的修改没有在主进程中生效,说明什么?说明他们之间的数据是隔离的,互相不影响的
print('主进程内: ', n)
# 打印结果
子进程内: 0
主进程内: 100
2.3 练习:多进程实现socket多客户端通讯
我们之前学socket的时候,知道tcp协议的socket
是不能同时和多个客户端进行连接的,(这里先不考虑socketserver
那个模块),那我们自己通过多进程来实现一下同时和多个客户端进行连接通信:
服务端代码示例:
from socket import *
from multiprocessing import Process
def talk(conn, client_addr):
while True:
try:
msg = conn.recv(1024)
print('客户端消息>>', msg)
if not msg: break
conn.send(msg.upper())
# 在这里有同学可能会想,我能不能在这里写input来自己输入内容和客户端进行对话?朋友,是这样的,按说是可以的,但是需要什么呢?需要你像我们用pycharm的是一样下面有一个输入内容的控制台,当我们的子进程去执行的时候,我们是没有地方可以显示能够让你输入内容的控制台的,所以你没办法输入,就会给你报错。
except Exception:
break
if __name__ == '__main__': # windows下start进程一定要写到这下面
server = socket(AF_INET, SOCK_STREAM)
# server.setsockopt(SOL_SOCKET, SO_REUSEADDR,1) # 如果你将如果你将bind这些代码写到if __name__ == '__main__'这行代码的上面,那么地址重用必须要有,因为我们知道windows创建的子进程是对整个当前文件的内容进行的copy,前面说了就像import,如果你开启了子进程,那么子进程是会执行bind的,那么你的主进程bind了这个ip和端口,子进程在进行bind的时候就会报错。
server.bind(('127.0.0.1', 8080))
# 有同学可能还会想,我为什么多个进程就可以连接一个server段的一个ip和端口了呢,我记得当时说tcp的socket的时候,我是不能在你这个ip和端口被连接的情况下再连接你的啊,这里是因为当时我们就是一个进程,一个进程里面是只能一个连接的,多进程是可以多连接的,这和进程之间是单独的内存空间有关系,先这样记住他,好吗?
server.listen(5)
while True:
conn, client_addr = server.accept()
p = Process(target=talk, args=(conn, client_addr))
p.start()
(注意:通过这个是不能做qq聊天的,因为qq聊天是qq的客户端把信息发给另外一个qq的客户端,中间有一个服务端帮你转发消息,而不是我们这样的单纯的客户端和服务端对话,并且子进程开启之后咱们是没法操作的,并且没有为子进程input输入提供控制台,所有你再在子进程中写上了input会报错,EOFError错误,这个错误的意思就是你的input需要输入,但是你输入不了,就会报这个错误。而子进程的输出打印之类的,是pycharm做了优化,将所有子进程中的输出结果帮你打印出来了,但实质还是不同进程的。)
客户端代码示例:
from socket import *
client = socket(AF_INET, SOCK_STREAM)
client.connect(('127.0.0.1', 8080))
while True:
msg = input('>>: ').strip()
if not msg: continue
client.send(msg.encode('utf-8'))
msg = client.recv(1024)
print(msg.decode('utf-8'))
2.4 Process对象的其他方法或属性
进程对象的其他方法一: terminate
, is_alive
from multiprocessing import Process
import time
import random
class Student(Process):
def __init__(self, name):
self.name = name
super().__init__()
def run(self):
print('%s is 做作业' % self.name)
# s = input('???') #别忘了再pycharm下子进程中不能input输入,会报错EOFError: EOF when reading a line,因为子进程中没有像我们主进程这样的在pycharm下的控制台可以输入东西的地方
time.sleep(2)
print('%s is 做作业结束' % self.name)
if __name__ == '__main__':
p1 = Student('太白')
p1.start()
time.sleep(2)
p1.terminate() # 关闭进程,不会立即关闭,有个等着操作系统去关闭这个进程的时间,所以is_alive立刻查看的结果可能还是存活,但是稍微等一会,就被关掉了
print(p1.is_alive()) # 结果为True
print('等会。。。。')
time.sleep(1)
print(p1.is_alive()) # 结果为False
# 打印结果:
Student-1 is 做作业
Student-1 is 做作业结束
True
等会。。。。
False
进程对象的其他方法二:name
和pid
from multiprocessing import Process
import time
import random
class Study(Process):
def __init__(self, name):
# self.name=name
# super().__init__() #Process的__init__方法会执行self.name=Study-1,所以加到这里,会覆盖我们的self.name=name
# 为我们开启的进程设置名字的做法
super().__init__()
self.name = name
def run(self):
print('%s is studying' % self.name)
time.sleep(random.randrange(1, 3))
print('%s is study end' % self.name)
p = Study('young')
p.start()
print('开始')
print(p.pid) # 查看pid
# 打印结果
开始
58745
young is studying
young is study end
注意:Process
的__init__
方法会执行self.name=Study-1
,所以我们的self.name=name
应该加在super().__init__()
之后,这样进程的名字就是我们设置的了
2.5 僵尸进程和孤儿进程
详见:
三、守护进程
? 之前我们讲的子进程是不会随着主进程的结束而结束,子进程全部执行完之后,程序才结束,那么如果有一天我们的需求是我的主进程结束了,由我主进程创建的那些子进程必须跟着结束,怎么办?守护进程就来了!
主进程创建守护进程
其一:守护进程会在主进程代码执行结束后就终止
其二:守护进程内无法再开启子进程,否则抛出异常:
AssertionError: daemonic processes are not allowed to have children
注意:进程之间是互相独立的,主进程代码运行结束,守护进程随即终止
import os
import time
from multiprocessing import Process
class Myprocess(Process):
def __init__(self, person):
super().__init__()
self.person = person
def run(self):
print(os.getpid(), self.person)
print('%s正在和女主播聊天' % self.person)
time.sleep(3)
if __name__ == '__main__':
p = Myprocess('太白')
p.daemon = True # 一定要在p.start()前设置,设置p为守护进程,禁止p创建子进程,并且父进程代码执行结束,p即终止运行
p.start()
# time.sleep(1) # 在sleep时linux下查看进程id对应的进程ps -ef|grep id
print('主')
四、进程同步(锁)
? 通过刚刚的学习,我们千方百计实现了程序的异步,让多个任务可以同时在几个进程中并发处理,他们之间的运行没有顺序,一旦开启也不受我们控制。尽管并发编程让我们能更加充分的利用IO资源,但是也给我们带来了新的问题:进程之间数据不共享,但是共享同一套文件系统,所以访问同一个文件,或同一个打印终端,是没有问题的,而共享带来的是竞争,竞争带来的结果就是错乱,如何控制,就是加锁处理。
多进程抢占输出资源,导致打印混乱的示例:
import os
import time
import random
from multiprocessing import Process
def work(n):
print('%s: %s is running' % (n, os.getpid()))
time.sleep(random.random())
print('%s:%s is done' % (n, os.getpid()))
if __name__ == '__main__':
for i in range(5):
p = Process(target=work, args=(i,))
p.start()
# 打印结果:
0: 59118 is running
1: 59119 is running
2: 59120 is running
3: 59121 is running
4: 59122 is running
0:59118 is done
2:59120 is done
1:59119 is done
3:59121 is done
4:59122 is done
看结果,可以看出两个问题:
问题一:每个进程中work
函数的第一个打印就不是按照我们for循环
的0-4的顺序来打印的
问题二:我们发现,每个work
进程中有两个打印,但是我们看到所有进程中第一个打印的顺序为0-1-2-3-4
,但是第二个打印没有按照这个顺序,变成了0-2-1-3-4
,说明我们一个进程中的程序的执行顺序都混乱了。
问题的解决方法: 第二个问题可以加锁来解决,第一个问题是没有办法解决的,因为进程开到了内核,有操作系统来决定进程的调度,我们自己控制不了
加锁:由并发改成了串行,牺牲了运行效率,但避免了竞争
from multiprocessing import Process, Lock
import os, time
def work(n, lock):
# 加锁,保证每次只有一个进程在执行锁里面的程序,这一段程序对于所有写上这个锁的进程,大家都变成了串行
lock.acquire()
print('%s: %s is running' % (n, os.getpid()))
time.sleep(1)
print('%s:%s is done' % (n, os.getpid()))
# 解锁,解锁之后其他进程才能去执行自己的程序
lock.release()
if __name__ == '__main__':
lock = Lock()
for i in range(5):
p = Process(target=work, args=(i, lock))
p.start()
#打印结果:
0: 59138 is running
0:59138 is done
1: 59139 is running
1:59139 is done
2: 59140 is running
2:59140 is done
3: 59141 is running
3:59141 is done
4: 59142 is running
4:59142 is done
结果分析:通过结果我们可以看出,多进程刚开始去执行的时候,每次运行,首先打印出来哪个进程的程序是不固定的,但是我们解决了上面打印混乱示例代码的第二个问题,那就是同一个进程中的两次打印都是先完成的,然后才切换到下一个进程去,打印下一个进程中的两个打印结果,说明我们控制住了同一进程中的代码执行顺序,如果涉及到多个进程去操作同一个数据或者文件的时候,就不担心数据算错或者文件中的内容写入混乱了。
4.1 模拟抢票
? 上面这种情况虽然使用加锁的形式实现了顺序的执行,但是程序又重新变成串行了,这样确实会浪费了时间,却保证了数据的安全。接下来,我们以模拟抢票为例,来看看数据安全的重要性:
- 并发运行,效率高,但是竞争同一个文件,导致数据混乱
from multiprocessing import Process, Lock
import json, random, time
# 查看剩余票数
def search():
dic = json.load(open('db')) # 打开文件,直接load文件中的内容,拿到文件中的包含剩余票数的字典
print('剩余票数%s' % dic['count'])
# 抢票
def get():
dic = json.load(open('db'))
time.sleep(0.1) # 模拟读数据的网络延迟,那么进程之间的切换,导致所有人拿到的字典都是{"count": 1},也就是每个人都拿到了这一票。
if dic['count'] > 0:
dic['count'] -= 1
time.sleep(0.2) # 模拟写数据的网络延迟
json.dump(dic, open('db', 'w'))
# 最终结果导致,每个人显示都抢到了票,这就出现了问题~
print('购票成功')
def task():
search()
get()
if __name__ == '__main__':
for i in range(3): # 模拟并发100个客户端抢票
p = Process(target=task)
p.start()
注意:首先在当前文件目录下创建一个名为db的文件,文件db的内容为:{"count":1}
,只有这一行数据,并且注意,每次运行完了之后,文件中的1变成了0,你需要手动将0改为1,然后在去运行代码。注意一定要用双引号,不然json无法识别
运行结果:
剩余票数1
剩余票数1
剩余票数1
购票成功
购票成功
购票成功
结果分析:由于网络延迟等原因使得进程切换,导致每个人都抢到了这最后一张票
- 加锁:购票行为由并发变成了串行,牺牲了效率,但是保证了数据安全
from multiprocessing import Process, Lock
import time, json
# 查看剩余票数
def search():
dic = json.load(open('db')) # 打开文件,直接load文件中的内容,拿到文件中的包含剩余票数的字典
print('剩余票数%s' % dic['count'])
# 抢票
def get():
dic = json.load(open('db'))
time.sleep(0.1) # 模拟读数据的网络延迟,那么进程之间的切换,导致所有人拿到的字典都是{"count": 1},也就是每个人都拿到了这一票。
if dic['count'] > 0:
dic['count'] -= 1
time.sleep(0.2) # 模拟写数据的网络延迟
json.dump(dic, open('db', 'w'))
# 最终结果导致,每个人显示都抢到了票,这就出现了问题~
print('购票成功')
else:
print('sorry,没票了亲!')
def task(lock):
search()
# 因为抢票的时候是发生数据变化的时候,所有我们将锁加加到这里
lock.acquire()
get()
lock.release()
if __name__ == '__main__':
lock = Lock() # 创建一个锁
for i in range(3): # 模拟并发100个客户端抢票
p = Process(target=task, args=(lock,)) # 将锁作为参数传给task函数
p.start()
# 打印结果:
剩余票数1
剩余票数1
剩余票数1
购票成功
sorry,没票了亲!
sorry,没票了亲!
4.2 进程锁总结
加锁可以保证多个进程修改同一块数据时,同一时间只能有一个任务可以进行修改,即串行的修改,牺牲了速度却保证了数据安全。进程锁的问题:
- 效率低(共享数据基于文件,而文件是硬盘上的数据)
- 需要自己加锁处理
因此我们最好找寻一种解决方案能够兼顾:
1、效率高(多个进程共享一块内存的数据)
2、帮我们处理好锁问题。
这就是mutiprocessing
模块为我们提供的基于消息的IPC
通信机制:队列和管道:
队列和管道都是将数据存放于内存中
队列又是基于(管道+锁)实现的,可以让我们从复杂的锁问题中解脱出来,
我们应该尽量避免使用共享数据,尽可能使用消息传递和队列,避免处理复杂的同步和锁问题,而且在进程数目增多时,往往可以获得更好的可获展性。
IPC通信机制(了解):IPC是intent-Process Communication的缩写,含义为进程间通信或者跨进程通信,是指两个进程之间进行数据交换的过程。IPC不是某个系统所独有的,任何一个操作系统都需要有相应的IPC机制,
比如Windows上可以通过剪贴板、管道和邮槽等来进行进程间通信,而Linux上可以通过命名共享内容、信号量等来进行进程间通信。Android它也有自己的进程间通信方式,Android建构在Linux基础上,继承了一部分Linux的通信方式。
五、队列
? 进程彼此之间互相隔离,要实现进程间通信(IPC),multiprocessing模块
支持两种形式:队列和管道,这两种方式都是使用消息传递的。
? 进程间通信(IPC)方式一:队列。队列就像一个特殊的列表,但是可以设置固定长度,并且从前面插入数据,从后面取出数据,先进先出。
Queue([maxsize])
- 创建共享的进程队列。
参数 :maxsize
是队列中允许的最大项数。如果省略此参数,则无大小限制。
注意:底层队列使用管道和锁实现。
5.1 Queue的方法介绍
q = Queue([maxsize])
创建共享的进程队列。maxsize是队列中允许的最大项数。如果省略此参数,则无大小限制。底层队列使用管道和锁定实现。另外,还需要运行支持线程以便队列中的数据传输到底层管道中。
Queue的实例q具有以下方法:
q.get( [ block [ ,timeout ] ] )
返回q中的一个项目。如果q为空,此方法将阻塞,直到队列中有项目可用为止。block用于控制阻塞行为,默认为True. 如果设置为False,将引发Queue.Empty异常(定义在Queue模块中)。timeout是可选超时时间,用在阻塞模式中。如果在制定的时间间隔内没有项目变为可用,将引发Queue.Empty异常。
q.get_nowait( )
同q.get(False)方法。
q.put(item [, block [,timeout ] ] )
将item放入队列。如果队列已满,此方法将阻塞至有空间可用为止。block控制阻塞行为,默认为True。如果设置为False,将引发Queue.Empty异常(定义在Queue库模块中)。timeout指定在阻塞模式中等待可用空间的时间长短。超时后将引发Queue.Full异常。
q.qsize()
返回队列中目前项目的正确数量。此函数的结果并不可靠,因为在返回结果和在稍后程序中使用结果之间,队列中可能添加或删除了项目。在某些系统上,此方法可能引发NotImplementedError异常。
q.empty()
如果调用此方法时 q为空,返回True。如果其他进程或线程正在往队列中添加项目,结果是不可靠的。也就是说,在返回和使用结果之间,队列中可能已经加入新的项目。
q.full()
如果q已满,返回为True. 由于线程的存在,结果也可能是不可靠的(参考q.empty()方法)
q.close()
关闭队列,防止队列中加入更多数据。调用此方法时,后台线程将继续写入那些已入队列但尚未写入的数据,但将在此方法完成时马上关闭。如果q被垃圾收集,将自动调用此方法。关闭队列不会在队列使用者中生成任何类型的数据结束信号或异常。例如,如果某个使用者正被阻塞在get()操作上,关闭生产者中的队列不会导致get()方法返回错误。
q.cancel_join_thread()
不会再进程退出时自动连接后台线程。这可以防止join_thread()方法阻塞。
q.join_thread()
连接队列的后台线程。此方法用于在调用q.close()方法后,等待所有队列项被消耗。默认情况下,此方法由不是q的原始创建者的所有进程调用。调用q.cancel_join_thread()方法可以禁止这种行为。
5.2 队列的简单用法
from multiprocessing import Queue
q = Queue(3) # 创建一个队列对象,队列长度为3
# put ,get ,put_nowait,get_nowait,full,empty
q.put(3) # 往队列中添加数据
q.put(2)
q.put(1)
# q.put(4) # 如果队列已经满了,程序就会停在这里,等待数据被别人取走,再将数据放入队列。
# 如果队列中的数据一直不被取走,程序就会永远停在这里。
try:
q.put_nowait(4) # 可以使用put_nowait,如果队列满了不会阻塞,但是会因为队列满了而报错。
except: # 因此我们可以用一个try语句来处理这个错误。这样程序不会一直阻塞下去,但是会丢掉这个消息。
print('队列已经满了')
# 因此,我们再放入数据之前,可以先看一下队列的状态,如果已经满了,就不继续put了。
print(q.full()) # 查看是否满了,满了返回True,不满返回False
print(q.get()) # 取出数据
print(q.get())
print(q.get())
# print(q.get()) # 同put方法一样,如果队列已经空了,那么继续取就会出现阻塞。
try:
q.get_nowait(3) # 可以使用get_nowait,如果队列满了不会阻塞,但是会因为没取到值而报错。
except: # 因此我们可以用一个try语句来处理这个错误。这样程序不会一直阻塞下去。
print('队列已经空了')
print(q.empty()) # 空了
# 打印结果:
队列已经满了
True
3
2
1
队列已经空了
True
子进程与父进程通过队列进行通信
from multiprocessing import Process, Queue
import time
# 8. q = Queue(2) #创建一个Queue对象,如果写在这里,那么在windows还子进程去执行的时候,我们知道子进程中还会执行这个代码,但是子进程中不能够再次创建了,也就是这个q就是你主进程中创建的那个q,通过我们下面在主进程中先添加了一个字符串之后,在去开启子进程,你会发现,小鬼这个字符串还在队列中,也就是说,我们使用的还是主进程中创建的这个队列。
def f(q):
# q = Queue() #9. 我们在主进程中开启了一个q,如果我们在子进程中的函数里面再开一个q,那么你下面q.put('姑娘,多少钱~')添加到了新创建的这q里里面了
q.put('姑娘,多少钱~') # 4.调用主函数中p进程传递过来的进程参数 put函数为向队列中添加一条数据。
# print(q.qsize()) #6.查看队列中有多少条数据了
def f2(q):
print('>>>>>: ')
print(q.get()) # 5.取数据
if __name__ == '__main__':
q = Queue() # 1.创建一个Queue对象
q.put('小鬼')
p = Process(target=f, args=(q,)) # 2.创建一个进程
p2 = Process(target=f2, args=(q,)) # 3.创建一个进程
p.start()
p2.start()
time.sleep(1) # 7.如果阻塞一点时间,就会出现主进程运行太快,导致我们在子进程中查看qsize为1个。
print(q.get()) #结果:小鬼
# print(q.get()) # 结果:姑娘,多少钱~
p.join()
批量的生产输入放入队列,再批量的获取结果
接下来看一个稍微复杂的例子:
import os
import time
import multiprocessing
# 向queue中输入数据的函数
def inputQ(queue):
info = str(os.getpid()) + '(put):' + str(time.asctime())
queue.put(info)
# 向queue中输出数据的函数
def outputQ(queue):
info = queue.get()
print('%s%s 33[32m%s 33[0m' % (str(os.getpid()), '(get):', info))
# Main
if __name__ == '__main__':
# windows下,如果开启的进程比较多的话,程序会崩溃,为了防止这个问题,使用freeze_support()方法来解决。知道就行啦
multiprocessing.freeze_support()
record1 = [] # store input processes
record2 = [] # store output processes
queue = multiprocessing.Queue(3)
# 输入进程
for i in range(10):
process = multiprocessing.Process(target=inputQ, args=(queue,))
process.start()
record1.append(process)
# 输出进程
for i in range(10):
process = multiprocessing.Process(target=outputQ, args=(queue,))
process.start()
record2.append(process)
for p in record1:
p.join()
for p in record2:
p.join()
输出结果:
63226(get):63216(put):Wed Apr 10 11:08:57 2019
63227(get):63217(put):Wed Apr 10 11:08:57 2019
63228(get):63218(put):Wed Apr 10 11:08:57 2019
63229(get):63219(put):Wed Apr 10 11:08:57 2019
63230(get):63220(put):Wed Apr 10 11:08:57 2019
63231(get):63221(put):Wed Apr 10 11:08:57 2019
63232(get):63222(put):Wed Apr 10 11:08:57 2019
63233(get):63223(put):Wed Apr 10 11:08:57 2019
63234(get):63224(put):Wed Apr 10 11:08:57 2019
63235(get):63225(put):Wed Apr 10 11:08:57 2019
队列是进程安全的:同一时间只能一个进程拿到队列中的一个数据,你拿到了一个数据,这个数据别人就拿不到了。
5.3 生产者消费者模型
? 在并发编程中使用生产者和消费者模式能够解决绝大数并发问题。该模式通过平衡生产线程和消费线程的工作能力来提高程序的整体处理数据的速度。
为什么要使用生产者和消费者模式:
? 在线程世界里,生产者就是生产数据的线程,消费者就是消费数据的线程。在多线程开发当中,如果生产者处理速度很快,而消费者处理速度很慢,那么生产者就必须等待消费者处理完,才能继续生产数据。同样的道理,如果消费者的处理能力大于生产者,那么消费者就必须等待生产者。为了解决这个问题引入了生产者和消费者模式。
什么是生产者和消费者模式?
生产者消费者模式是通过一个容器来解决生产者和消费者的强耦合问题。生产者和消费者彼此之间不直接通讯,所以生产者生产完数据之后不用等待消费者处理,直接扔给阻塞队列,消费者不找生产者要数据,而是直接从阻塞队列里取,阻塞队列就相当于一个缓冲区,平衡了生产者和消费者的处理能力,并且我可以根据生产速度和消费速度来均衡一下多少个生产者可以为多少个消费者提供足够的服务,就可以开多进程等,而这些进程都是到阻塞队列或者说是缓冲区中去获取或者添加数据。
基于队列实现一个生产者消费者模型
from multiprocessing import Process, Queue
import time, random, os
def consumer(q):
while True:
res = q.get()
time.sleep(random.randint(1, 3))
print('