算法 in Golang:Quicksort(快速排序)
Posted 小乔的博客
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了算法 in Golang:Quicksort(快速排序)相关的知识,希望对你有一定的参考价值。
算法 in Golang:Quicksort(快速排序)
Quicksort(快速排序)
- 快速排序 O(nlog2^n),比选择排序要快 O(n²)
- 在日常生活中经常使用
- 使用了 D & C 策略(分而治之)
使用 Quicksort 排序数组
- 不需要排序的数组(也就是 Base Case 基线条件):
- [],空数组
- [s],单元素数组
- 很容易排序的数组:
- [a, b],两个元素的数组,只需检查它们之间的大小即可,调换位置
- 3 个元素的数组(例如 [23, 19, 35]):
- 使用 D & C 策略,简化至基线条件(Base case)
-
从数组中随便选一个元素,例如 35,这个元素叫做 pivot(基准元素)
-
找到比 pivot 小的元素,找到比 pivot 大的元素,这叫做分区:[23, 19], (35), []
-
如果左右两个子数组已排好序(达到基线条件),结果:左边 + [pivot] + 右边
-
如果左右两个子数组没排好序(没达到基线条件),那么:
quicksort(左边) + [pivot] + quicksort(右边)
使用 Quicksort 排序数组的步骤
- 选择一个 pivot
- 将数组分为两个子数组:
- 左侧数组的元素都比 pivot 小
- 右侧数组的元素都比 pivot 大
- 在两个子数组上递归的调用 quicksort
创建项目
~/Code/go via 手撸golang 基本数据结构与算法 快速排序
缘起
最近阅读<<我的第一本算法书>>(【日】石田保辉;宫崎修一)
本系列笔记拟采用golang练习之
快速排序(Quick Sort)
快速排序算法首先会在序列中随机选择一个基准值(pivot),
然后将除了基准值以外的数,
分为“比基准值小的数”和“比基准值大的数”这两个类别,
再将其排列成以下形式:
[ 比基准值小的数 ] 基准值 [ 比基准值大的数 ]
接着,对两个“[]”中的数据进行排序之后,
整体的排序便完成了。
对“[]”里面的数据进行排序时同样也会使用快速排序。
快速排序是一种“分治法”。
它将原本的问题分成两个子问题(比基准值小的数和比基准值大的数),
然后再分别解决这两个问题(递归地)。
平均运行时间为O(nlogn)
摘自 <<我的第一本算法书>> 【日】石田保辉;宫崎修一
流程(非递归, 原地快速排序)
- 给定待排序数组data[N]
- 定义待排序栈stack, 其中元素是一个(left, right)整型坐标, 表示待排序子序列的范围
- 初始时, 将(0, N-1)压入stack, 表示需要将整个序列进行排序
当stack不为空时, 循环执行:
- 待排序子序列出栈: left, right = stack.pop()
- 取基准值v = data[left], 然后data[left]置为nil, 腾出一个格子备用
- 取左指针l = left, 右指针r = right, 当前指针标识(左/右)rside = true
- 如果rside == true, 将右指针r向左移动, 直到: data[r] < v, 或r=l
- 如果找到data[r] < v, 则把data[r]置入data[l]指向的空位, data[r]设nil, 腾出一个格子
- 如果rside == false, 将左指针l向右移动, 直到: data[l] > v, 或l=r
- 如果找到data[l] > v, 则把data[l]置入data[r]指向的空位, data[l]设nil, 腾出一个格子
- 如果l == r, 左右序列切分完成, 将基准值v置入data[l], 返回
- 循环执行步骤4-8
- stack为空, 排序完成
为什么要非递归
- 极端情况下(比如特别大的数组, 刚好已经是倒序排列, 而每次取基准值是取left位置), 递归算法可能导致栈嵌套过深, 一个是占用大量内存, 二个是可能导致栈溢出错误.
- 快速排序需要左右子序列的中间结果, 再进行合并, 因此无法通过尾递归优化消除栈嵌套
目标
- 实现并验证快速排序
- 使用辅助的子序列坐标栈, 实现非递归执行
- 原地排序, 不占用额外空间
设计
- ISorter: 定义排序器接口. 定义值比较函数以兼容任意数值类型, 通过调整比较函数实现倒序排序
- tQStack: 实现一个堆栈, 辅助快速排序时, 记录待排序的子序列坐标
- tQuickSort: 非递归的原地快速排序器, 实现ISorter接口, 使用辅助栈消除递归
单元测试
quick_sort_test.go, 测试过程与堆排序, 归并排序类似, 样本规模为10万元素
package sorting
import (
"fmt"
"learning/gooop/sorting"
"learning/gooop/sorting/quick_sort"
"math/rand"
"testing"
"time"
)
func Test_QuickSort(t *testing.T) {
fnAssertTrue := func(b bool, msg string) {
if !b {
t.Fatal(msg)
}
}
reversed := false
fnCompare := func(a interface{}, b interface{}) sorting.CompareResult {
i1 := a.(int)
i2 := b.(int)
if i1 < i2 {
if reversed {
return sorting.GREATER
} else {
return sorting.LESS
}
} else if i1 == i2 {
return sorting.EQUAL
} else {
if reversed {
return sorting.LESS
} else {
return sorting.GREATER
}
}
}
fnTestSorter := func(sorter sorting.ISorter) {
reversed = false
// test simple array
samples := []interface{} { 2,3,1,5,4,7,6 }
samples = sorter.Sort(samples, fnCompare)
fnAssertTrue(fmt.Sprintf("%v", samples) == "[1 2 3 4 5 6 7]", "expecting 1,2,3,4,5,6,7")
t.Log("pass sorting [2 3 1 5 4 7 6] >> [1 2 3 4 5 6 7]")
// test 10000 items sorting
rnd := rand.New(rand.NewSource(time.Now().UnixNano()))
for plus := 0;plus < 5;plus++ {
sampleCount := 100 * 1000 + plus
t.Logf("prepare large array with %v items", sampleCount)
samples = make([]interface{}, sampleCount)
for i := 0; i < sampleCount; i++ {
samples[i] = rnd.Intn(sampleCount * 10)
}
t.Logf("sorting large array with %v items", sampleCount)
t0 := time.Now().UnixNano()
samples = sorter.Sort(samples, fnCompare)
cost := time.Now().UnixNano() - t0
for i := 1; i < sampleCount; i++ {
fnAssertTrue(fnCompare(samples[i-1], samples[i]) != sorting.GREATER, "expecting <=")
}
t.Logf("end sorting large array, cost = %v ms", cost/1000000)
}
// test 0-20
sampleCount := 20
t.Log("sorting 0-20")
samples = make([]interface{}, sampleCount)
for i := 0;i < sampleCount;i++ {
for {
p := rnd.Intn(sampleCount)
if samples[p] == nil {
samples[p] = i
break
}
}
}
t.Logf("unsort = %v", samples)
samples = sorter.Sort(samples, fnCompare)
t.Logf("sorted = %v", samples)
fnAssertTrue(fmt.Sprintf("%v", samples) == "[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]", "expecting 0-20")
t.Log("pass sorting 0-20")
// test special
samples = []interface{} {}
samples = sorter.Sort(samples, fnCompare)
t.Log("pass sorting []")
samples = []interface{} { 1 }
samples = sorter.Sort(samples, fnCompare)
t.Log("pass sorting [1]")
samples = []interface{} { 3,1 }
samples = sorter.Sort(samples, fnCompare)
fnAssertTrue(fmt.Sprintf("%v", samples) == "[1 3]", "expecting 1,3")
t.Log("pass sorting [1 3]")
reversed = true
samples = []interface{} { 2, 3,1 }
samples = sorter.Sort(samples, fnCompare)
fnAssertTrue(fmt.Sprintf("%v", samples) == "[3 2 1]", "expecting 3,2,1")
t.Log("pass sorting [3 2 1]")
}
t.Log("\\ntesting QuickSorter")
fnTestSorter(quick_sort.QuickSorter)
}
测试输出
- 快速排序真的很快, 与堆排序,归并排序是一个数量级, 10万随机元素排序耗时仅数十毫秒
- 对随机数据的排序比归并排序还稍快一些, 这可能是因为原地排序不需要预分配缓冲区
$ go test -v quick_sort_test.go
=== RUN Test_QuickSort
quick_sort_test.go:111:
testing QuickSorter
quick_sort_test.go:48: pass sorting [2 3 1 5 4 7 6] >> [1 2 3 4 5 6 7]
quick_sort_test.go:54: prepare large array with 100000 items
quick_sort_test.go:60: sorting large array with 100000 items
quick_sort_test.go:67: end sorting large array, cost = 27 ms
quick_sort_test.go:54: prepare large array with 100001 items
quick_sort_test.go:60: sorting large array with 100001 items
quick_sort_test.go:67: end sorting large array, cost = 28 ms
quick_sort_test.go:54: prepare large array with 100002 items
quick_sort_test.go:60: sorting large array with 100002 items
quick_sort_test.go:67: end sorting large array, cost = 33 ms
quick_sort_test.go:54: prepare large array with 100003 items
quick_sort_test.go:60: sorting large array with 100003 items
quick_sort_test.go:67: end sorting large array, cost = 32 ms
quick_sort_test.go:54: prepare large array with 100004 items
quick_sort_test.go:60: sorting large array with 100004 items
quick_sort_test.go:67: end sorting large array, cost = 27 ms
quick_sort_test.go:72: sorting 0-20
quick_sort_test.go:83: unsort = [11 3 4 2 9 19 18 7 12 6 13 5 10 0 15 14 17 1 8 16]
quick_sort_test.go:86: sorted = [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]
quick_sort_test.go:88: pass sorting 0-20
quick_sort_test.go:93: pass sorting []
quick_sort_test.go:97: pass sorting [1]
quick_sort_test.go:102: pass sorting [1 3]
quick_sort_test.go:108: pass sorting [3 2 1]
--- PASS: Test_QuickSort (0.18s)
PASS
ok command-line-arguments 0.184s
ISorter.go
定义排序器接口. 定义值比较函数以兼容任意数值类型, 通过调整比较函数实现倒序排序
package sorting
type ISorter interface {
Sort(data []interface{}, comparator CompareFunction) []interface{}
}
type CompareFunction func(a interface{}, b interface{}) CompareResult
type CompareResult int
const LESS CompareResult = -1
const EQUAL CompareResult = 0
const GREATER CompareResult = 1
tQStack.go
实现一个堆栈, 辅助快速排序时, 记录待排序的子序列坐标
package quick_sort
type tQStack struct {
stack []tIntPair
capacity int
size int
}
type tIntPair [2]int
var gEmptyPair = [2]int{ -1, -1 }
func newQStack() *tQStack {
return &tQStack{
stack: make([]tIntPair, 0),
capacity: 0,
size: 0,
}
}
func (me *tQStack) push(left,right int) {
node := tIntPair([2]int{left,right})
if me.size < me.capacity {
me.stack[me.size] = node
} else {
me.stack = append(me.stack, node)
me.capacity++
}
me.size++
}
func (me *tQStack) pop() (left, right int) {
me.size--
it := me.stack[me.size]
me.stack[me.size] = gEmptyPair
return it[0], it[1]
}
func (me *tQStack) isEmpty() bool {
return me.size <= 0
}
func (me *tQStack) isNotEmpty() bool {
return me.size > 0
}
tQuickSort.go
非递归的原地快速排序器, 实现ISorter接口, 使用辅助栈消除递归
package quick_sort
import (
"learning/gooop/sorting"
)
type tQuickSort struct {
}
func newQuickSort() sorting.ISorter {
return &tQuickSort{}
}
func (me *tQuickSort) Sort(data []interface{}, comparator sorting.CompareFunction) []interface{} {
if data == nil {
return nil
}
size := len(data)
if size <= 1 {
return data
}
if size == 2 {
if comparator(data[0], data[1]) == sorting.GREATER {
data[0],data[1] = data[1], data[0]
return data
}
}
stack := newQStack()
stack.push(0, size - 1)
me.qsort(data, comparator, stack)
return data
}
func (me *tQuickSort) qsort(data []interface{}, comparator sorting.CompareFunction, stack *tQStack) {
for ;stack.isNotEmpty(); {
left, right := stack.pop()
lfrom, lto, rfrom, rto := me.split(data, comparator, left, right)
if lfrom < lto {
stack.push(lfrom, lto)
}
if rfrom < rto {
stack.push(rfrom, rto)
}
}
}
func (me *tQuickSort) split(data []interface{}, comparator sorting.CompareFunction, left int, right int) (lfrom, lto, rfrom, rto int) {
if left >= right {
return
}
v := data[left]
l := left
r := right
rside := true
for {
hit := false
if rside {
for ; r > l; r-- {
if comparator(data[r], v) == sorting.LESS {
hit = true
break
}
}
if hit {
data[l], data[r] = data[r], nil
l++
rside = false
}
} else {
for ; l < r;l++ {
if comparator(data[l], v) == sorting.GREATER {
hit = true
break
}
}
if hit {
data[r], data[l] = data[l], nil
r--
rside = true
}
}
if l == r {
data[l] = v
break
}
}
return left, l - 1, r + 1, right
}
var QuickSorter = newQuickSort()
(end)
以上是关于算法 in Golang:Quicksort(快速排序)的主要内容,如果未能解决你的问题,请参考以下文章
Algorithms - Quicksort - 快速排序算法