python对影评进行评论分析,形成词云图
Posted 心目
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python对影评进行评论分析,形成词云图相关的知识,希望对你有一定的参考价值。
1 # -*- coding:utf-8 -*-
2 ‘‘‘
3 抓取豆瓣电影某部电影的评论
4抓取电影
5 网址链接:https://movie.douban.com/subject/26630781/comments
6 为了抓取全部评论需要先进行登录
7 ‘‘‘
8 from selenium import webdriver
9 import time
10 import codecs
11 import jieba
12 import jieba.analyse as analyse
13 from wordcloud import WordCloud
14 from scipy.misc import imread
15 from os import path
16
17 def get_douban_comments(url):
18 comments_list = [] # 评论列表
19 login_url = ‘https://accounts.douban.com/login?source=movie‘
20 user_name = ‘1111111‘ # 这里替换成你的豆瓣用户名
21 password = ‘11111111‘ # 这里替换成你的密码
22 driver = webdriver.Firefox() # 启动Firefox()
23 driver.get(login_url)
24 driver.find_element_by_id(‘email‘).clear() # 清除输入框
25 driver.find_element_by_id(‘email‘).send_keys(user_name) # 输入用户名
26 driver.find_element_by_id(‘password‘).clear()
27 driver.find_element_by_id(‘password‘).send_keys(password) # 输入密码
28 captcha_field = raw_input(‘请打开浏览器输入验证码:‘) # 手动填入验证码
29 driver.find_element_by_id(‘captcha_field‘).send_keys(captcha_field)
30 driver.find_element_by_class_name(‘btn-submit‘).click() # 点击登录按钮
31 time.sleep(5) # 等待跳转到登录之后的页面
32 driver.get(url) # 定位到目标页面
33 driver.implicitly_wait(3) # 智能等待3秒
34 n = 501 # 页数
35 count = 10000 # 评论数目
36 while True:
37 try:
38 results = driver.find_elements_by_class_name(‘comment‘)
39 for result in results:
40 # author = result.find_elements_by_tag_name(‘a‘)[1].text # 作者
41 # vote = result.find_element_by_class_name(‘comment-vote‘).find_element_by_tag_name(‘span‘).text # 赞同数目
42 # time0 = result.find_element_by_class_name(‘comment-info‘).find_elements_by_tag_name(‘span‘)[1].text # 时间
43 comment = result.find_element_by_tag_name(‘p‘).text # 评论内容
44 comments_list.append(comment+u‘
‘)
45 print u"查找到第%d个评论" % count
46 count += 1
47 driver.find_element_by_class_name(‘next‘).click() # 点击下一页
48 print u‘第%d页查找完毕!‘ % n
49 n += 1
50 time.sleep(4)
51 except Exception,e:
52 print e
53 break
54 with codecs.open(‘pjl_comment.txt‘,‘a‘,encoding=‘utf-8‘) as f:
55 f.writelines(comments_list)
56 print u"查找到第%d页,第%d个评论!" %(n,count)
57
58 # 得到所有关键词
59 def get_all_keywords(file_name):
60 word_lists = [] # 关键词列表
61 with codecs.open(file_name,‘r‘,encoding=‘utf-8‘) as f:
62 Lists = f.readlines() # 文本列表
63 for List in Lists:
64 cut_list = list(jieba.cut(List))
65 for word in cut_list:
66 word_lists.append(word)
67 word_lists_set = set(word_lists) # 去除重复元素
68 sort_count = []
69 word_lists_set = list(word_lists_set)
70 length = len(word_lists_set)
71 print u"共有%d个关键词" % length
72 k = 1
73 for w in word_lists_set:
74 sort_count.append(w+u‘:‘+unicode(word_lists.count(w))+u"次
")
75 print u"%d---" % k + w+u":"+unicode(word_lists.count(w))+ u"次"
76 k += 1
77 with codecs.open(‘count_word.txt‘,‘w‘,encoding=‘utf-8‘) as f:
78 f.writelines(sort_count)
79
80 def get_top_keywords(file_name):
81 top_word_lists = [] # 关键词列表
82 with codecs.open(file_name,‘r‘,encoding=‘utf-8‘) as f:
83 texts = f.read() # 读取整个文件作为一个字符串
84 Result = analyse.textrank(texts,topK=20,withWeight=True,withFlag=True)
85 n = 1
86 for result in Result:
87 print u"%d:" % n ,
88 for C in result[0]: # result[0] 包含关键词和词性
89 print C,u" ",
90 print u"权重:"+ unicode(result[1]) # 关键词权重
91 n += 1
92
93 # 绘制词云
94 def draw_wordcloud():
95 with codecs.open(‘pjl_comment.txt‘,encoding=‘utf-8‘) as f:
96 comment_text = f.read()
97 cut_text = " ".join(jieba.cut(comment_text)) # 将jieba分词得到的关键词用空格连接成为字符串
98 d = path.dirname(__file__) # 当前文件文件夹所在目录
99 color_mask = imread("F:/python2.7work/wordcloud/alice_color.png") # 读取背景图片
100 cloud = WordCloud(font_path=path.join(d,‘simsun.ttc‘),background_color=‘white‘,mask=color_mask,max_words=2000,max_font_size=40)
101 word_cloud = cloud.generate(cut_text) # 产生词云
102 word_cloud.to_file("pjl_cloud.jpg")
103
104
105
106 if __name__ == ‘__main__‘:
107 ‘‘‘
108 url = ‘https://movie.douban.com/subject/26630781/comments?start=10581&limit=20&sort=new_score‘
109 get_douban_comments(url)
110 file_name = ‘pjl_comment.txt‘
111 get_top_keywords(file_name)
112 ‘‘‘
113 draw_wordcloud()
以上是关于python对影评进行评论分析,形成词云图的主要内容,如果未能解决你的问题,请参考以下文章
Python爬取《哆啦A梦-伴我同行2》影评,手把手带你绘制词云图!
Python爬取《哆啦A梦-伴我同行2》影评,手把手带你绘制词云图!