阻塞IO非阻塞IOIO复用

Posted zhangyi555

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了阻塞IO非阻塞IOIO复用相关的知识,希望对你有一定的参考价值。

前言

在《Unix网络编程》一书中提到了五种IO模型,分别是:阻塞IO、非阻塞IO、IO复用、信号驱动IO以及异步IO。本篇文章主要介绍IO的基本概念以及阻塞IO、非阻塞IO、IO复用三种模型,供大家参考学习。

一、什么是IO

计算机视角理解IO:

对于计算机而言,任何涉及到计算机核心(CPU和内存)与其他设备间的数据转移的过程就是IO。IO对于计算机而言有两层意思:

  • IO 设备:比如我们最常见的打印机、鼠标、键盘。
  • 对IO设备的数据读写。

程序视角理解IO:

现代操作系统将空间划分为用户空间和内核空间。

  • 用户空间:非内核应用程序则运行在用户空间。用户空间中的代码运行在较低的特权级别上,不能直接访问内核空间和硬件设备。
  • 内核空间:操作系统的核心,是操作系统工作的基础,它负责管理系统的进程、内存、设备驱动程序、文件和网络系统,决定着系统的性能和稳定性。

 

操作系统为了能够正常平稳地运行下去,它是不会允许应用程序随意访问计算机硬件部分,如内存、硬盘、网卡,应用程序必须通过操作系统提供的API来访问,以达到安全的访问控制。

总结:IO对于应用程序而言,强调的是通过向内核发起系统调用完成对I/O的间接访问。

应用程序发起一次IO访问分为两个阶段:

  1. IO调用阶段:应用程序向内核发起系统调用。
  2. IO执行阶段:内核执行IO操作并返回。
    • 数据准备阶段:内核等待IO设备准备好数据
    • 数据拷贝阶段:将数据从内核缓冲区拷贝到用户空间缓冲区

 

二、阻塞IO模型

阻塞I/O模型是最常见的IO模型,其流程图如下所示。

 

应用程序发起一个系统调用(recvform),这个时候应用程序会一直阻塞下去,直到内核把数据准备好,并将其从内核复制到用户空间,复制完成后返回成功提示,这个时候应用程序才会继续处理数据。

  • 优点:模型简单,实现难度低,适用于并发量较小的应用开发。
  • 缺点:IO调用阶段和IO执行阶段都会阻塞。

典型的阻塞I/0模型的例子为data=socket.read(),如果内核数据没有准备就绪,Socket线程就会一直阻塞在read()中等待内核数据就绪。

生活场景:某天,你跟你女朋友去奶茶店买奶茶,点完奶茶后后,由于你们不知道奶茶什么时候才能做好,所以你们就只能一直等着,其他什么事情也不能干。

三、非阻塞 IO模型

在非阻塞IO模型中,应用进程需要不断询问内核数据是否就绪,在内核数据还未就绪时,应用进程还可以做其他事情。

 

从上图可以看出, 非阻塞IO模型需要应用进程不断地主动询问内核数据是否已准备好了。

  • 优点:模型简单,实现难度低;与阻塞IO模型对比,它在等待数据报的过程中,进程并没有阻塞,它可以做其他的事情。
  • 缺点:轮询发送 recvform,消耗CPU 资源。

生活场景:你和你女朋友去奶茶店买奶茶,吸取了上一次的教训,点完奶茶后顺便去逛了逛商场。由于你们担心会错过取餐,所以你们就每隔一段时间就来问下服务员,你们的奶茶做好了没有,来来回回好多回,若干次后,终于问到奶茶已经准备好了,然后你们就开心的喝了起来。

四、IO复用模型

非阻塞IO模型需要进程不断地轮询发起recvform系统调用,就会有很多的线程不断调用recvfrom 请求数据,先不说服务器能不能扛得住这么多线程,就算扛得住那么很明显这种方式是不是太浪费资源了,线程是我们操作系统的宝贵资源,大量的线程用来去读取数据了,那么就意味着能做其它事情的线程就会少。

例如:你是奶茶店的服务员,每个人点好奶茶后,每隔几分钟就来问你一次好了没有,随着问的人越来越多,你可能会开始怀疑人生。那么有没有什么好的解决办法呢?

答案:不需要所有进程轮询来发起recvform来查询数据是否已经准备好了,而是有人帮忙来询问,这个帮忙的人就是select。

IO复用模型如下所示:

 

多个进程的IO注册到一个复用器(select)上,select 会监听所有注册进来的IO。如果内核的数据报没有准备好,调用select 的进程将会被阻塞,而当任一IO在内核缓冲区中有数据,select调用就会返回可读条件,然后进程再进行recvform系统调用,内核将数据拷贝到用户空间,注意这个过程是阻塞的。

注意:IO 复用模型在第一个阶段和第二个阶段其实都有阻塞,第一个阶段阻塞于 select 调用,第二个阶段阻塞于数据复制。

  • 优点:适用于高并发应用程序。
  • 缺点:模型复杂,实现、开发难度较大。

生活场景:如果每个人都过一会就来问一下奶茶好了没有,奶茶店的压力也太大了。于是奶茶店想到了一个办法,找一个中间人(select)挡在奶茶店前面,顾客(应用进程)询问那个中间人奶茶好了没有(对应多个进程的IO注册到一个复用器(select)上),如果没有好就让顾客等待(应用进程阻塞于 select 调用)。中间人持续查看顾客的奶茶是否准备好,如果有一个人的奶茶准备好了就会去通知那个人可以取了(而当任一IO在内核缓冲区中有数据,select调用就会返回可读条件,然后进程再进行recvform系统调用)。

 

总结

学习IO模型时,必须要把每个模型联系起来看,比如阻塞IO模型会阻塞较长时间,而非阻塞IO在等待数据报的过程中,进程并没有阻塞,它可以做其他的事情。IO复用模型可以很好的降低服务器的压力,且在连接数众多且消息体不大的情况下有很大的优势。

来源:blog.csdn.net/qq_52173163/article/details/125932018

阻塞IO非阻塞IOIO多路复用同步IO异步IO 的理论

同步(synchronous) IO和异步(asynchronous) IO,阻塞(blocking) IO和非阻塞(non-blocking)IO分别是什么,到底有什么区别?这个问题其实不同的人给出的答案都可能不同,比如wiki,就认为asynchronous IO和non-blocking IO是一个东西。这其实是因为不同的人的知识背景不同,并且在讨论这个问题的时候上下文(context)也不相同。所以,为了更好的回答这个问题,我先限定一下本文的上下文。
本文讨论的背景是Linux环境下的network IO。
本文最重要的参考文献是Richard Stevens的“UNIX? Network Programming Volume 1, Third Edition: The Sockets Networking ”,6.2节“I/O Models ”,Stevens在这节中详细说明了各种IO的特点和区别,如果英文够好的话,推荐直接阅读。Stevens的文风是有名的深入浅出,所以不用担心看不懂。本文中的流程图也是截取自参考文献。

 

Stevens在文章中一共比较了五种IO Model:
    blocking IO
    nonblocking IO
    IO multiplexing
    signal driven IO
    asynchronous IO
由于signal driven IO在实际中并不常用,所以我这只提及剩下的四种IO Model。

再说一下IO发生时涉及的对象和步骤。
对于一个network IO (这里我们以read举例),它会涉及到两个系统对象,一个是调用这个IO的process (or thread),另一个就是系统内核(kernel)。当一个read操作发生时,它会经历两个阶段:
 1 等待数据准备 (Waiting for the data to be ready)
 2 将数据从内核拷贝到进程中 (Copying the data from the kernel to the process)
记住这两点很重要,因为这些IO Model的区别就是在两个阶段上各有不同的情况。

 

blocking IO 
在linux中,默认情况下所有的socket都是blocking,一个典型的读操作流程大概是这样:

技术分享图片

当用户进程调用了recvfrom这个系统调用,kernel就开始了IO的第一个阶段:准备数据。对于network io来说,很多时候数据在一开始还没有到达(比如,还没有收到一个完整的UDP包),这个时候kernel就要等待足够的数据到来。而在用户进程这边,整个进程会被阻塞。当kernel一直等到数据准备好了,它就会将数据从kernel中拷贝到用户内存,然后kernel返回结果,用户进程才解除block的状态,重新运行起来。
所以,blocking IO的特点就是在IO执行的两个阶段都被block了。

 

non-blocking IO

linux下,可以通过设置socket使其变为non-blocking。当对一个non-blocking socket执行读操作时,流程是这个样子:

技术分享图片

从图中可以看出,当用户进程发出read操作时,如果kernel中的数据还没有准备好,那么它并不会block用户进程,而是立刻返回一个error。从用户进程角度讲 ,它发起一个read操作后,并不需要等待,而是马上就得到了一个结果。用户进程判断结果是一个error时,它就知道数据还没有准备好,于是它可以再次发送read操作。一旦kernel中的数据准备好了,并且又再次收到了用户进程的system call,那么它马上就将数据拷贝到了用户内存,然后返回。
所以,用户进程其实是需要不断的主动询问kernel数据好了没有。

 

IO multiplexing

IO multiplexing这个词可能有点陌生,但是如果我说select,epoll,大概就都能明白了。有些地方也称这种IO方式为event driven IO。我们都知道,select/epoll的好处就在于单个process就可以同时处理多个网络连接的IO。它的基本原理就是select/epoll这个function会不断的轮询所负责的所有socket,当某个socket有数据到达了,就通知用户进程。它的流程如图:

技术分享图片

当用户进程调用了select,那么整个进程会被block,而同时,kernel会“监视”所有select负责的socket,当任何一个socket中的数据准备好了,select就会返回。这个时候用户进程再调用read操作,将数据从kernel拷贝到用户进程。
这个图和blocking IO的图其实并没有太大的不同,事实上,还更差一些。因为这里需要使用两个system call (select 和 recvfrom),而blocking IO只调用了一个system call (recvfrom)。但是,用select的优势在于它可以同时处理多个connection。(多说一句。所以,如果处理的连接数不是很高的话,使用select/epoll的web server不一定比使用multi-threading + blocking IO的web server性能更好,可能延迟还更大。select/epoll的优势并不是对于单个连接能处理得更快,而是在于能处理更多的连接。)
在IO multiplexing Model中,实际中,对于每一个socket,一般都设置成为non-blocking,但是,如上图所示,整个用户的process其实是一直被block的。只不过process是被select这个函数block,而不是被socket IO给block。

 

Asynchronous I/O

linux下的asynchronous IO其实用得很少。先看一下它的流程:

技术分享图片

用户进程发起read操作之后,立刻就可以开始去做其它的事。而另一方面,从kernel的角度,当它受到一个asynchronous read之后,首先它会立刻返回,所以不会对用户进程产生任何block。然后,kernel会等待数据准备完成,然后将数据拷贝到用户内存,当这一切都完成之后,kernel会给用户进程发送一个signal,告诉它read操作完成了。

 

 

到目前为止,已经将四个IO Model都介绍完了。现在回过头来回答最初的那几个问题:blocking和non-blocking的区别在哪,synchronous IO和asynchronous IO的区别在哪。
先回答最简单的这个:blocking vs non-blocking。前面的介绍中其实已经很明确的说明了这两者的区别。调用blocking IO会一直block住对应的进程直到操作完成,而non-blocking IO在kernel还准备数据的情况下会立刻返回。

在说明synchronous IO和asynchronous IO的区别之前,需要先给出两者的定义。Stevens给出的定义(其实是POSIX的定义)是这样子的:
    A synchronous I/O operation causes the requesting process to be blocked until that I/O operation completes;
    An asynchronous I/O operation does not cause the requesting process to be blocked; 
两者的区别就在于synchronous IO做”IO operation”的时候会将process阻塞。按照这个定义,之前所述的blocking IO,non-blocking IO,IO multiplexing都属于synchronous IO。有人可能会说,non-blocking IO并没有被block啊。这里有个非常“狡猾”的地方,定义中所指的”IO operation”是指真实的IO操作,就是例子中的recvfrom这个system call。non-blocking IO在执行recvfrom这个system call的时候,如果kernel的数据没有准备好,这时候不会block进程。但是,当kernel中数据准备好的时候,recvfrom会将数据从kernel拷贝到用户内存中,这个时候进程是被block了,在这段时间内,进程是被block的。而asynchronous IO则不一样,当进程发起IO 操作之后,就直接返回再也不理睬了,直到kernel发送一个信号,告诉进程说IO完成。在这整个过程中,进程完全没有被block。

各个IO Model的比较如图所示:

技术分享图片

经过上面的介绍,会发现non-blocking IO和asynchronous IO的区别还是很明显的。在non-blocking IO中,虽然进程大部分时间都不会被block,但是它仍然要求进程去主动的check,并且当数据准备完成以后,也需要进程主动的再次调用recvfrom来将数据拷贝到用户内存。而asynchronous IO则完全不同。它就像是用户进程将整个IO操作交给了他人(kernel)完成,然后他人做完后发信号通知。在此期间,用户进程不需要去检查IO操作的状态,也不需要主动的去拷贝数据。

本文转载 https://blog.csdn.net/historyasamirror/article/details/5778378

 
























以上是关于阻塞IO非阻塞IOIO复用的主要内容,如果未能解决你的问题,请参考以下文章

python下:事件驱动与 阻塞IO非阻塞IOIO多路复用异步IO

理论铺垫:阻塞IO非阻塞IOIO多路复用/事件驱动IO(单线程高并发原理)异步IO

IO多路复用原理

Linux文件IOIO多路复用

Linux五种IO模型

Python并发编程之IO模型