第八课 常用机器学习算法性能对比

Posted tgltt

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了第八课 常用机器学习算法性能对比相关的知识,希望对你有一定的参考价值。

       市面上常用的机器学习算法,也就剩下KNN、朴素贝叶斯、决策树、随机森林这些算法了,这些算法各有优劣,适用不同的场景,没有谁能把所有其他的算法干掉而统一天下。

       下面将通过准确率、耗时两个维度,来对比KNN、朴素贝叶斯、决策树、随机森林这几个算法的性能。

1、构建数据集,并拆分为训练集和测试集

 

       调用SkLearn的make_classification构建分类数据集,总计10个分类,10万个样本,每个样本有100个特征(属性),这100个特征中,有意义的特征有20个,冗余的特征也有20个。

构建完数据集,调用train_test_split将构建好的数据集拆分为训练集(8万个样本)和测试集(2万个)样本。

2、测试KNN算法

       调用SkLearn的KNeighborsClassifier,使用上面自定义的数据集训练和测试,测试结果:训练耗时1.3秒,训练集准确率86.9%,而推理准确率77.5%,推理耗时327秒。

 

3、测试朴素贝叶斯算法

       调用SkLearn的GaussionNB,使用上面自定义的数据集训练和测试,测试结果:

  训练耗时0.16秒,训练集准确率42.7%,测试集准确率42.1%,推理耗时0.19秒。

 

4、测试决策树算法

  调用SkLearn的DecisionTreeClassifier,使用上面自定义的数据集训练和测试,测试结果:训练耗时15.24秒,训练集准确率100%,测试集准确率44.3%,推理耗时0.01秒。可见使用默认参数(无剪枝的情况下) ,决策树算法严重过拟合,所以需对决策树进行适当剪枝。

 

5、测试随机森林算法

       调用SkLearn的RandomForestClassifier,使用上面自定义的数据集训练和测试,测试结果:训练耗时98.25秒,训练集准确率100%,测试集准确率77.0%,推理耗时0.72秒。

随机森林的训练时间比决策树的时间长,因为随机森林要训练很多棵树,下面代码的随机森林内包含100棵树,其达到的准确率还是可以的,推理时间也很快,虽然训练时间长了点,但这只是线下时间,用户并不关心你的模型训练要多长时间,他只关心线上推理时间是否接受。

 

6、测试支持向量机(SVM)算法

       支持向量机是过去算法的王者,如今已经没落了,它的算法准确率是机器学习算法中最高的,但其所需的推理时间也是最慢的,尤其是在大数据集上,所以本系列课程并未引入课程对其进行介绍。

       调用SkLearn的SVC,使用上面自定义的数据集训练和测试,测试结果:训练耗时520.09秒,训练集准确率91.3%,测试集准确率88.0%,推理耗时142.75秒。

 

7、小结

       上面对KNN、朴素贝叶斯、决策树、随机森林、SVC五种机器学习算法进行了比较,为了更直观地进行对比,下面将汇总一个表格来体现这几个算法的性能数据。

       综合比较,随机森林在当前场景的性能是最优的。

 

Scrapy学习第八课

python爬虫框架scrapy学习第八课

目标爬取文章,实现文本和图片数据存储

文本数据以json文件存储

文本数据存储在mongodb数据库中

图片保存在本地

爬取地址:伯乐在线文章

爬虫实例

1.items.py

# -*- coding: utf-8 -*-

# Define here the models for your scraped items
#
# See documentation in:
# https://doc.scrapy.org/en/latest/topics/items.html

import scrapy


class JobboleItem(scrapy.Item):
    #标题
    title = scrapy.Field()

    #发布日期
    create_date = scrapy.Field()

    #链接
    url = scrapy.Field()

    #MD5加密的url
    url_object_id = scrapy.Field()

    #图片的url
    front_image_url = scrapy.Field()

    #图片存储路径
    front_image_path = scrapy.Field()

    #点赞数
    praise_nums = scrapy.Field()

    #收藏数
    fav_nums = scrapy.Field()

    #评论数
    comment_nums = scrapy.Field()

    #标签
    tag = scrapy.Field()

    #内容
    #content = scrapy.Field()

2.bole.py

# -*- coding: utf-8 -*-
import scrapy
from urllib.parse import urljoin
from jobBole.items import JobboleItem
import re
import hashlib
import datetime

def get_md5(md5str):
    #生成1个MD5对象
    m1 = hashlib.md5()
    #使用MD5对象你的update方法进行md5转换
    m1.update(md5str.encode("utf-8"))
    md5ConvertStr = m1.hexdigest()
    return md5ConvertStr


class BoleSpider(scrapy.Spider):
    name = 'bole'
    allowed_domains = ['blog.jobbole.com']
    start_urls = ['http://blog.jobbole.com/all-posts/']

    def parse(self, response):
        '''
        1.获取文章列表也中具体文章url,并交给scrapy进行下载后并进行解析
        2.获取下一页的url并交给scrapy进行下载,下载完成后,交给parse
        :param response:
        :return:
        '''

        #解析列表页中所有文章的url, 并交给scrapy下载并解析
        post_nodes = response.css("#archive .floated-thumb .post-thumb a")
        for post_node in post_nodes:
            #image_url是图片的地址
            image_url = post_node.css("img::attr(src)").extract_first("")
            post_url = post_node.css("::attr(href)").extract_first("")
            #这里通过meta参数将图片的url传递进来,parse.urljoin的好处是如果有域名,则前面的response.url不生效
            #如果没有,就会把response.url和post_urlz做拼接
            yield scrapy.Request(url=urljoin(response.url, post_url), meta=
                "front_image_url": urljoin(response.url, image_url)
            ,callback = self.parse_detail)  

        #提取下一页并交给scrapy下载
        next_url = response.css(".next.page-numbers::attr(href)").extract_first("")   
        curr_page = int(response.xpath('//span[@class="page-numbers current"]/text()').extract()[0])
        if next_url and curr_page < 3:
            yield scrapy.Request(url = next_url, callback = self.parse)

    def parse_detail(self, response):
        '''
        获取文章的详细内容
        :param response:
        :return:
        '''
        article_item = JobboleItem()
        front_image_url = response.meta.get("front_image_url", "")
        title = response.xpath('//div[@class="entry-header"]/h1/text()').extract_first()
        
        create_date = response.xpath('//p[@class="entry-meta-hide-on-mobile"]/text()').extract()[0].strip().split()[0]
        tag_list = response.xpath('//p[@class="entry-meta-hide-on-mobile"]/a/text()').extract()
        #去掉标签中的评论
        tag_list = [element for element in tag_list if  -1 == element.find("评论")]
        tag = ",".join(tag_list)
        praise_nums = response.xpath('//span[contains(@class, "vote-post-up")]/h10/text()') .extract()[0]
        print('praise_nums  ',  praise_nums)
        if len(praise_nums) == 0:
            praise_nums = 0
        else:
            praise_nums = int(praise_nums[0]) 
       
        fav_nums = response.xpath('//span[contains(@class, "bookmark-btn")]/text()').extract()[0]
        match_re = re.match(".*(\\d+).*", fav_nums)
        if match_re:
            fav_nums = int(match_re.group(1))
        else:
            fav_nums = 0
        #print('@@@@   ', response.xpath('//a[@href="#article-comment"]/span/text()').extract())
        comment_nums = response.xpath('//a[@href="#article-comment"]/span/text()').extract()[0]
    
        match_com = re.match(".*(\\d+).*", comment_nums)
        if match_com:
            comment_nums= int(match_com.group(1))
        else:
            comment_nums = 0

        content = response.xpath('//div[@class="entry"]').extract()[0]

        article_item['url_object_id'] = get_md5(response.url) #对地址进行md5变成了定长
        article_item['title'] = title
        article_item['url'] = response.url
        try:
            create_date = datetime.datetime.strptime(create_date, '%Y/%m/%d').date()
        except Exception as e:
            create_date = datetime.now().date()

        article_item['create_date'] = str(create_date)
        article_item['front_image_url'] = [front_image_url]
        article_item['praise_nums'] = int(praise_nums)
        article_item['fav_nums'] = fav_nums
        article_item['comment_nums'] = comment_nums
        article_item['tag'] = tag
        #article_item['content'] = content
        yield article_item

3.settings.py

ITEM_PIPELINES = 
   'jobBole.pipelines.JobbolePipeline': 300,
   'jobBole.pipelines.ArticleImagePipeline' : 301,
   'jobBole.pipelines.MongoDBTwistedPipline': 302

IMAGES_STORE = 'D:\\SunWork\\python\\jobBole'

MONGODB_HOST = '127.0.0.1'
MONGODB_PORT = 27017
MONGODB_DBNAME = 'bole'
MONGODB_SHEETNAME = 'bolePaper'

4.pipelines.py

# -*- coding: utf-8 -*-

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html

import scrapy
from scrapy.pipelines.images import ImagesPipeline
import codecs
import json
import pymongo
from scrapy.conf import settings

class JobbolePipeline(object):
    '''
    返回json数据到文件中
    '''
    def __init__(self):
        self.file = codecs.open("article.json", 'w',encoding='utf-8')

    def process_item(self, item, spider):
        print('@@@@@@@@@@ ', item)
        lines = json.dumps(dict(item), ensure_ascii=False) + "\\n"
        self.file.write(lines)
        return item

    def spider_closed(self, spider):
        self.file.close()

class ArticleImagePipeline(ImagesPipeline):
    '''
    对图片的处理
    '''
    def get_media_requests(self, item, info):
        for image_url in item['front_image_url']:
            yield scrapy.Request(image_url)
        

    def item_completed(self, results, item, info):
        for ok, value in results:
            if ok:
                image_file_path = value['path']
                item['front_image_path'] = image_file_path
            else:
                item['front_image_path'] = ""
           
        return item
    
class MongoDBTwistedPipline(object):
    def __init__(self):
        #主机
        host = settings["MONGODB_HOST"]
        #端口
        port = settings["MONGODB_PORT"]
        #数据库名
        dbname = settings["MONGODB_DBNAME"]
        #数据表名
        sheetname = settings["MONGODB_SHEETNAME"]
        #创建MONGODB数据库
        client = pymongo.MongoClient(host=host, port=port)
        #指定数据库
        mydb = client[dbname]
        #指定数据表
        self.post = mydb[sheetname]
    
    def process_item(self, item, spider):
        data = dict(item)
        self.post.insert(data)
        return item

注:代码来源https://www.cnblogs.com/zhaof/p/7173094.html。在此基础上进行部分修改。

以上是关于第八课 常用机器学习算法性能对比的主要内容,如果未能解决你的问题,请参考以下文章

第八课泛型编程简介

第八课 ROS的空间描述和变换

iOS第八课——Navigation Controller和Tab bar Controller

接口测试学习-python第八课(数据驱动测试)

Scrapy学习第八课

Scrapy学习第八课