Java并发----线程sleepyield线程优先级

Posted |旧市拾荒|

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Java并发----线程sleepyield线程优先级相关的知识,希望对你有一定的参考价值。

1、sleep 与 yield

sleep

  1. 调用 sleep 会让当前线程从 Running 进入 Timed Waiting 状态(阻塞)

  2. 其它线程可以使用 interrupt 方法打断正在睡眠的线程,这时 sleep 方法会抛出 InterruptedException

  3. 睡眠结束后的线程未必会立刻得到执行

  4. 建议用 TimeUnit 的 sleep 代替 Thread 的 sleep 来获得更好的可读性(TimeUnit.SECONDS.sleep(1);)

调用sleep

    public static void main(String[] args) 
        Thread t1 = new Thread("t1") 
            @Override
            public void run() 
                try 
                    Thread.sleep(2000);
                 catch (InterruptedException e) 
                    e.printStackTrace();
                
            
        ;
​
        t1.start();
        log.debug("t1 state: ", t1.getState());
​
        try 
            Thread.sleep(500);
         catch (InterruptedException e) 
            e.printStackTrace();
        
        log.debug("t1 state: ", t1.getState());
    

输出

22:23:02.365 c.Test6 [main] - t1 state: RUNNABLE
22:23:02.893 c.Test6 [main] - t1 state: TIMED_WAITING

调用interrupt

    public static void main(String[] args) throws InterruptedException 
        Thread t1 = new Thread("t1") 
            @Override
            public void run() 
                log.debug("enter sleep...");
                try 
                    Thread.sleep(2000);
                 catch (InterruptedException e) 
                    log.debug("wake up...");
                    e.printStackTrace();
                
            
        ;
        t1.start();
​
        Thread.sleep(1000);
        log.debug("interrupt...");
        t1.interrupt();
    

输出

22:26:48.155 c.Test7 [t1] - enter sleep...
22:26:49.158 c.Test7 [main] - interrupt...
22:26:49.158 c.Test7 [t1] - wake up...
java.lang.InterruptedException: sleep interrupted
    at java.lang.Thread.sleep(Native Method)
    at cn.itcast.test.Test7$1.run(Test7.java:14)

yield

  1. 调用 yield 会让当前线程从 Running 进入 Runnable 就绪状态,然后调度执行其它线程,注意:如果没有其他线程的话,可能还是执行当前线程

  2. 具体的实现依赖于操作系统的任务调度器

2、sleep yield区别

共同点:

1.都是Thread类中的类方法

2.都会导致正在执行的线程释放CPU

区别:

1.线程进入的状态不同:sleep方法导致线程进入到阻塞状态,yield方法导致线程进入就绪状态

2.是否考虑线程优先级:sleep方法不会考虑线程优先级,当一个线程调用sleep方法释放CPU后,所有优先级级别的线程都有机会获得CPU。yield方法会考虑线程优先级。当一个线程调用sleep方法释放CPU后,与该线程具有同等优先级,或优先级比该线程高的线程有机会获得CPU

3.可移植性:sleep方法比yield方法具有更好的可移植性

4.是否抛出异常:sleep方法声明抛出InterruptedException,而yield方法没有声明任何异常

5.是否有参数:sleep方法在Thread类中有两种重载形式,sleep(long ms),sleep(long ms,int nanos)yield方法没有参数

 

3、线程优先级

  • 线程优先级会提示(hint)调度器优先调度该线程,但它仅仅是一个提示,调度器可以忽略它

  • 如果 cpu 比较忙,那么优先级高的线程会获得更多的时间片,但 cpu 闲时,优先级几乎没作用

所以不一定优先级设置高就一定能有限执行,具体执行依赖任务调度器。

Runnable task1 = () -> 
    int count = 0;
    for (;;) 
        System.out.println("---->1 " + count++);
    
;
Runnable task2 = () -> 
    int count = 0;
    for (;;) 
        // Thread.yield();
        System.out.println("              ---->2 " + count++);
    
;
Thread t1 = new Thread(task1, "t1");
Thread t2 = new Thread(task2, "t2");
// t1.setPriority(Thread.MIN_PRIORITY);
// t2.setPriority(Thread.MAX_PRIORITY);
t1.start();
t2.start();

这里读者可将注释去掉自行实践,即可体会yield与优先级的使用。

 

Java线程池必备知识点:工作流程常见参数调优监控

blog.csdn.net/u014454538/article/details/96910729

1. Java的线程池

① 合理使用线程池的好处

Java的线程池是运用场景最多的并发框架,几乎所有需要异步或者并发执行任务的程序都可以使用线程池。

合理使用线程池能带来的好处:

降低资源消耗。

通过重复利用已经创建的线程降低线程创建的和销毁造成的消耗。例如,工作线程Woker会无线循环获取阻塞队列中的任务来执行。

提高响应速度。

当任务到达时,任务可以不需要等到线程创建就能立即执行。

提高线程的可管理性。

线程是稀缺资源,Java的线程池可以对线程资源进行统一分配、调优和监控。

② 线程池的工作流程

一个新的任务到线程池时,线程池的处理流程如下:

  1. 线程池判断核心线程池里的线程是否都在执行任务。如果不是,创建一个新的工作线程来执行任务。如果核心线程池里的线程都在执行任务,则进入下个流程。
  2. 线程池判断阻塞队列是否已满。如果阻塞队列没有满,则将新提交的任务存储在阻塞队列中。如果阻塞队列已满,则进入下个流程。
  3. 线程池判断线程池里的线程是否都处于工作状态。如果没有,则创建一个新的工作线程来执行任务。如果已满,则交给饱和策略来处理这个任务。
Java线程池必备知识点:工作流程、常见参数、调优、监控

线程池的核心实现类是ThreadPoolExecutor类,用来执行提交的任务。因此,任务提交到线程池时,具体的处理流程是由ThreadPoolExecutor类的execute()方法去完成的。

Java线程池必备知识点:工作流程、常见参数、调优、监控
  1. 如果当前运行的线程少于corePoolSize,则创建新的工作线程来执行任务(执行这一步骤需要获取全局锁)。
  2. 如果当前运行的线程大于或等于corePoolSize,而且BlockingQueue未满,则将任务加入到BlockingQueue中。
  3. 如果BlockingQueue已满,而且当前运行的线程小于maximumPoolSize,则创建新的工作线程来执行任务(执行这一步骤需要获取全局锁)。
  4. 如果当前运行的线程大于或等于maximumPoolSize,任务将被拒绝,并调用RejectExecutionHandler.rejectExecution()方法。即调用饱和策略对任务进行处理。

工作线程(Worker)

线程池在创建线程时,会将线程封装成工作线程Woker。Woker在执行完任务后,不是立即销毁而是循环获取阻塞队列里的任务来执行。

③ 线程池的创建(7个参数)

可以通过ThreadPoolExecutor来创建一个线程池:

new ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, 
 TimeUnit unit, BlockingQueue<Runnable> workQueue, RejectedExecutionHandler handler)

corePoolSize(线程池的基本大小):

  1. 提交一个任务到线程池时,线程池会创建一个新的线程来执行任务。注意:即使有空闲的基本线程能执行该任务,也会创建新的线程。
  2. 如果线程池中的线程数已经大于或等于corePoolSize,则不会创建新的线程。
  3. 如果调用了线程池的prestartAllCoreThreads()方法,线程池会提前创建并启动所有基本线程。

maximumPoolSize(线程池的最大数量):线程池允许创建的最大线程数。

  1. 阻塞队列已满,线程数小于maximumPoolSize便可以创建新的线程执行任务。
  2. 如果使用无界的阻塞队列,该参数没有什么效果。

workQueue(工作队列):用于保存等待执行的任务的阻塞队列。

  1. ArrayBlockingQueue:基于数组结构的有界阻塞队列,按FIFO(先进先出)原则对任务进行排序。使用该队列,线程池中能创建的最大线程数为maximumPoolSize。
  2. LinkedBlockingQueue:基于链表结构的无界阻塞队列,按FIFO(先进先出)原则对任务进行排序,吞吐量高于ArrayBlockingQueue。使用该队列,线程池中能创建的最大线程数为corePoolSize。静态工厂方法 Executor.newFixedThreadPool()使用了这个队列。
  3. SynchronousQueue:一个不存储元素的阻塞队列。添加任务的操作必须等到另一个线程的移除操作,否则添加操作一直处于阻塞状态。静态工厂方法 Executor.newCachedThreadPool()使用了这个队列。
  4. PriorityBlokingQueue:一个支持优先级的无界阻塞队列。使用该队列,线程池中能创建的最大线程数为corePoolSize。

keepAliveTime(线程活动保持时间):线程池的工作线程空闲后,保持存活的时间。如果任务多而且任务的执行时间比较短,可以调大keepAliveTime,提高线程的利用率。

unit(线程活动保持时间的单位):可选单位有DAYS、HOURS、MINUTES、毫秒、微秒、纳秒。

handler(饱和策略,或者又称拒绝策略):当队列和线程池都满了,即线程池饱和了,必须采取一种策略处理提交的新任务。

  • AbortPolicy:无法处理新任务时,直接抛出异常,这是默认策略。
  • CallerRunsPolicy:用调用者所在的线程来执行任务。
  • DiscardOldestPolicy:丢弃阻塞队列中最靠前的一个任务,并执行当前任务。
  • DiscardPolicy:直接丢弃任务。

threadFactory:构建线程的工厂类

总结:

1.常用的5个,核心池、最大池、空闲时间、时间的单位、阻塞队列;另外两个:拒绝策略、线程工厂类

2.常见线程池的创建参数如下。PS: CachedThreadPool核心池为0,最大池为Integer.MAX_VALUE,相当于只使用了最大池;其他线程池,核心池与最大池一样大,因此相当于只用了核心池。

FixedThredPool: new ThreadExcutor(n, n, 0L, ms, new LinkedBlockingQueue<Runable>()
SingleThreadExecutor: new ThreadExcutor(1, 1, 0L, ms, new LinkedBlockingQueue<Runable>())
CachedTheadPool: new ThreadExcutor(0, max_valuem, 60L, s, new SynchronousQueue<Runnable>());
ScheduledThreadPoolExcutor: ScheduledThreadPool, SingleThreadScheduledExecutor.

3.如果使用的阻塞队列为无界队列,则永远不会调用拒绝策略,因为再多的任务都可以放在队列中。

4.SynchronousQueue是不存储任务的,新的任务要么立即被已有线程执行,要么创建新的线程执行。

④ 向线程池提交任务

使用ThreadPoolEXecutor.executor()方法来提交任务:

public void execute(Runnable command) {
    // command为null,抛出NullPointerException
    if (command == null)
        throw new NullPointerException();      
    int c = ctl.get();
    // 线程池中的线程数小于corePoolSize,创建新的线程
    if (workerCountOf(c) < corePoolSize) {
        if (addWorker(command, true))// 创建工作线程
            return;
        c = ctl.get();
    }
    // 将任务添加到阻塞队列,如果
    if (isRunning(c) && workQueue.offer(command)) {
        int recheck = ctl.get();
        if (! isRunning(recheck) && remove(command))
            reject(command);
        else if (workerCountOf(recheck) == 0)
            addWorker(nullfalse);
    }// 阻塞队列已满,尝试创建新的线程,如果超过maximumPoolSize,执行handler.rejectExecution()
    else if (!addWorker(command, false))
        reject(command);
}

⑤ 线程池的五种运行状态

RUNNING :  该状态的线程池既能接受新提交的任务,又能处理阻塞队列中任务。

SHUTDOWN: 该状态的线程池不能接收新提交的任务,但是能处理阻塞队列中的任务。(政府服务大厅不在允许群众拿号了,处理完手头的和排队的政务就下班。)

  • 处于 RUNNING 状态时,调用 shutdown()方法会使线程池进入到该状态。
  • 注意:finalize() 方法在执行过程中也会隐式调用shutdown()方法。

STOP:  该状态的线程池不接受新提交的任务,也不处理在阻塞队列中的任务,还会中断正在执行的任务。(政府服务大厅不再进行服务了,拿号、排队、以及手头工作都停止了。)

  • 在线程池处于 RUNNING 或 SHUTDOWN 状态时,调用 shutdownNow() 方法会使线程池进入到该状态;

TIDYING:  如果所有的任务都已终止,workerCount (有效线程数)=0 。

  • 线程池进入该状态后会调用 terminated() 钩子方法进入TERMINATED 状态。

TERMINATED: 在terminated()钩子方法执行完后进入该状态,默认terminated()钩子方法中什么也没有做。

⑥ 线程池的关闭(shutdown或者shutdownNow方法)

可以通过调用线程池的shutdown或者shutdownNow方法来关闭线程池:遍历线程池中工作线程,逐个调用interrupt方法来中断线程。

shutdown方法与shutdownNow的特点:

  • shutdown方法将线程池的状态设置为SHUTDOWN状态,只会中断空闲的工作线程。
  • shutdownNow方法将线程池的状态设置为STOP状态,会中断所有工作线程,不管工作线程是否空闲。
  • 调用两者中任何一种方法,都会使isShutdown方法的返回值为true;线程池中所有的任务都关闭后,isTerminated方法的返回值为true。
  • 通常使用shutdown方法关闭线程池,如果不要求任务一定要执行完,则可以调用shutdownNow方法。

2. java线程池的调优以及监控

① 线程池的调优(线程池的合理配置)

先从以下几个角度分析任务的特性:

  • 任务的性质:CPU 密集型任务、IO 密集型任务和混合型任务。
  • 任务的优先级:高、中、低。
  • 任务的执行时间:长、中、短。
  • 任务的依赖性:是否依赖其他系统资源,如数据库连接。

任务性质不同的任务可以用不同规模的线程池分开处理。可以通过 Runtime.getRuntime().availableProcessors() 方法获得当前设备的 CPU 个数。

CPU 密集型任务配置 尽可能小的线程,如配置N^cpu+1个线程的线程池。

IO 密集型任务则由于线程并不是一直在执行任务,则配置尽可能多的线程,如2*N^cpu

混合型任务 如果可以拆分,则将其拆分成一个 CPU 密集型任务和一个 IO 密集型任务。只要这两个任务执行的时间相差不是太大,那么分解后执行的吞吐率要高于串行执行的吞吐率;如果这两个任务执行时间相差太大,则没必要进行分解。

  • 优先级不同的任务可以使用优先级队列 PriorityBlockingQueue 来处理,它可以让优先级高的任务先得到执行。但是,如果一直有高优先级的任务加入到阻塞队列中,那么低优先级的任务可能永远不能执行。
  • 执行时间不同的任务可以交给不同规模的线程池来处理,或者也可以使用优先级队列,让执行时间短的任务先执行。
  • 依赖数据库连接池的任务,因为线程提交 SQL 后需要等待数据库返回结果,线程数应该设置得较大,这样才能更好的利用 CPU。
  • 建议使用有界队列,有界队列能增加系统的稳定性和预警能力。可以根据需要设大一点,比如几千。使用无界队列,线程池的队列就会越来越大,有可能会撑满内存,导致整个系统不可用。② 线程池的监控

可以通过线程池提供的参数读线程池进行监控,有以下属性可以使用:

  • taskCount:线程池需要执行的任务数量,包括已经执行完的、未执行的和正在执行的。
  • completedTaskCount:线程池在运行过程中已完成的任务数量, completedTaskCount <= taskCount
  • largestPoolSize:线程池曾经创建过的最大线程数量,通过这个数据可以知道线程池是否满过。如等于线程池的最大大小,则表示线程池曾经满了。
  • getPoolSize: 线程池的线程数量。如果线程池不销毁的话,池里的线程不会自动销毁,所以线程池的线程数量只增不减。
  • getActiveCount:获取活动的线程数。

通过继承线程池并重写线程池的 beforeExecute,afterExecute 和 terminated 方法,我们可以在任务执行前,执行后和线程池关闭前干一些事情。

如监控任务的平均执行时间,最大执行时间和最小执行时间等。这几个方法在线程池里是空方法,如:

protected void beforeExecute(Thread t, Runnable r) { }

3. Java线程池的常见问题

1. 讲讲Java的线程池

基础讲解:

  • 以ThreadPoolExecutor为切入点,讲解excute()方法中所体现的Java线程池运行流程。
  • 工作线程Worker,它的循环工作特点
  • 如何新建线程池:7个参数(重点在阻塞队列和饱和策略)
进阶:
  • 线程池五个状态的特点以及如何进行状态之间的切换:running、shutdown、stop、tidying、terminated。
  • 如何关闭线程:shutdown方法和shutdownNow方法的特点
  • 线程池的调优(针对任务的不同特性 + 建议使用有界队列)
  • 线程池的监控参数以及可以重写的方法。

两种主要的线程池类型:普通的线程池ThreadPoolExecutor,支持延迟或周期性执行的任务的线程池ScheduledThreadPoolExcutor。

讲解ThreadPoolExcutor中5个常用参数+2个不常用参数,包含的三种线程池:创建时的参数、运行的流程、各自适合的场景。

讲解ScheduledThreadPoolExecutor的阻塞队列的原理、如何更改任务的time。

提供了五种定义好的线程池,都可以通过Executors工具类去调用,比如Executors.newFixedThreadPool(12)

2. 具体的场景

如果corePoolSize为x,maximumPoolSize为y,阻塞队列为z,第w个任务进来如何分配?

3. 线程池如何进行调优?

线程池的调优(针对任务的不同特性 + 建议使用有界队列)

4. 线程池中的核心参数

超过核心size怎么处理,队列满怎么处理,拒绝策略有哪些?(比较具体)

END

推荐好文


以上是关于Java并发----线程sleepyield线程优先级的主要内容,如果未能解决你的问题,请参考以下文章

多线程--sleepyield对比

Java线程池必备知识点:工作流程常见参数调优监控

Java线程池面试必备:核心参数工作流监控调优手段

Day805.使用设计模式优化并发编程 -Java 性能调优实战

Java线程同步和并发第1部分

CPU调优并发问题