Python实现机器学习算法:逻辑回归
Posted chenxiangzhen
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python实现机器学习算法:逻辑回归相关的知识,希望对你有一定的参考价值。
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets.samples_generator import make_classification
def initialize_params(dims):
w = np.zeros((dims, 1))
b = 0
return w, b
def sigmoid(x):
z = 1 / (1 + np.exp(-x))
return z
def logistic(X, y, w, b):
num_train = X.shape[0]
y_hat = sigmoid(np.dot(X, w) + b)
loss = -1 / num_train * np.sum(y * np.log(y_hat) + (1-y) * np.log(1-y_hat))
cost = -1 / num_train * np.sum(y * np.log(y_hat) + (1 - y) * np.log(1 - y_hat))
dw = np.dot(X.T, (y_hat - y)) / num_train
db = np.sum(y_hat - y) / num_train
return y_hat, cost, dw, db
def linear_train(X, y, learning_rate, epochs):
# 参数初始化
w, b = initialize_params(X.shape[1])
loss_list = []
for i in range(epochs):
# 计算当前的预测值、损失和梯度
y_hat, loss, dw, db = logistic(X, y, w, b)
loss_list.append(loss)
# 基于梯度下降的参数更新
w += -learning_rate * dw
b += -learning_rate * db
# 打印迭代次数和损失
if i % 10000 == 0:
print("epoch %d loss %f" % (i, loss))
# 保存参数
params = {
'w': w,
'b': b
}
# 保存梯度
grads = {
'dw': dw,
'db': db
}
return loss_list, loss, params, grads
def predict(X, params):
w = params['w']
b = params['b']
y_pred = sigmoid(np.dot(X, w) + b)
return y_pred
if __name__ == "__main__":
# 生成数据
X, labels = make_classification(n_samples=100,
n_features=2,
n_informative=2,
n_redundant=0,
random_state=1,
n_clusters_per_class=2)
print(X.shape)
print(labels.shape)
# 生成伪随机数
rng = np.random.RandomState(2)
X += 2 * rng.uniform(size=X.shape)
# 划分训练集和测试集
offset = int(X.shape[0] * 0.9)
X_train, y_train = X[:offset], labels[:offset]
X_test, y_test = X[offset:], labels[offset:]
y_train = y_train.reshape((-1, 1))
y_test = y_test.reshape((-1, 1))
print('X_train=', X_train.shape)
print('y_train=', y_train.shape)
print('X_test=', X_test.shape)
print('y_test=', y_test.shape)
# 训练
loss_list, loss, params, grads = linear_train(X_train, y_train, 0.01, 100000)
print(params)
# 预测
y_pred = predict(X_test, params)
print(y_pred[:10])
以上是关于Python实现机器学习算法:逻辑回归的主要内容,如果未能解决你的问题,请参考以下文章
[机器学习与scikit-learn-20]:算法-逻辑回归-线性逻辑回归linear_model.LogisticRegression与代码实现
[机器学习与scikit-learn-21]:算法-逻辑回归-多项式非线性回归PolynomialFeatures与代码实现