Apache Hudi 在袋鼠云数据湖平台的设计与实践

Posted 数栈DTinsight

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Apache Hudi 在袋鼠云数据湖平台的设计与实践相关的知识,希望对你有一定的参考价值。

在大数据处理中,实时数据分析是一个重要的需求。随着数据量的不断增长,对于实时分析的挑战也在不断加大,传统的批处理方式已经不能满足实时数据处理的需求,需要一种更加高效的技术来解决这个问题。Apache Hudi(Hadoop Upserts Deletes and Incremental Processing)就是这样一种技术,提供了高效的实时数据仓库管理功能。

本文将介绍袋鼠云基于 Hudi 构建数据湖的整体方案架构及其在实时数据仓库处理方面的特点,并且为大家展示一个使用 Apache Hudi 的简单示例,便于新手上路。

Apache Hudi 介绍

Apache Hudi 是一个开源的数据湖存储系统,可以在 Hadoop 生态系统中提供实时数据仓库处理功能。Hudi 最早由 Uber 开发,后来成为 Apache 顶级项目。

Hudi 主要特性

· 支持快速插入和更新操作,以便在数据仓库中实时处理数据;

· 提供增量查询功能,可有效提高数据分析效率;

· 支持时间点查询,以便查看数据在某一时刻的状态;

· 与 Apache Spark、Hive 等大数据分析工具兼容。

Hudi 架构

Apache Hudi 的架构包括以下几个主要组件:

· Hudi 数据存储:Hudi 数据存储是 Hudi 的核心组件,负责存储数据,数据存储有两种类型:Copy-On-Write(COW)和 Merge-On-Read(MOR);

· Copy-On-Write:COW 存储类型会在对数据进行更新时,创建一个新的数据文件副本,将更新的数据写入副本中,之后,新的数据文件副本会替换原始数据文件;

· Merge-On-Read:MOR 存储类型会在查询时,将更新的数据与原始数据进行合并,这种方式可以减少数据存储的写入延迟,但会增加查询的计算量;

· Hudi 索引:Hudi 索引用于维护数据记录的位置信息,索引有两种类型:内置索引(如 Bloom 过滤器)和外部索引(如 HBase 索引);

· Hudi 查询引擎:Hudi 查询引擎负责处理查询请求,Hudi 支持多种查询引擎,如 Spark SQL、Hive、Presto 等。

Hudi 的使用场景

Apache Hudi 可以帮助企业和组织实现实时数据处理和分析。实时数据处理需要快速地处理和查询数据,同时还需要保证数据的一致性和可靠性。

Apache Hudi 的增量数据处理ACID 事务性保证、写时合并等技术特性可以帮助企业更好地实现实时数据处理和分析,基于 Hudi 的特性可以在一定程度上在实时数仓的构建过程中承担上下游数据链路的对接(类似 Kafka 的角色)。既能实现增量的数据处理,也能为批流一体的处理提供存储基础。

Hudi 的优势和劣势

● 优势

· 高效处理大规模数据集;

· 支持实时数据更新和查询;

· 实现了增量写入机制,提高了数据访问效率;

· Hudi 可以与流处理管道集成;

· Hudi 提供了时间旅行功能,允许回溯数据的历史版本。

● 劣势

· 在读写数据时需要付出额外的代价;

· 操作比较复杂,需要使用专业的编程语言和工具。

Hudi 在袋鼠云数据湖平台上的实践

Hudi 在袋鼠云数据湖的技术架构

Hudi 在袋鼠云的数据湖平台上主要对数据湖管理提供助力:

· 元数据的接入,让用户可以快速的对表进行管理;

· 数据快速接入,包括对符合条件的原有表数据进行转换,快速搭建数据湖能力;

· 湖表的管理,监控小文件定期进行合并,提升表的查询性能,内在丰富的表操作功能,包括 time travel ,孤儿文件清理,过期快照清理等;

· 索引构建,提供多种索引包括 bloom filter,zorder 等,提升计算引擎的查询性能。

Hudi 使用示例

在介绍了 Hudi 的基本信息和袋鼠云数据湖平台的结构之后,我们来看一个使用示例,替换 Flink 在内存中的 join 过程。

在 Flink 中对多流 join 往往是比较头疼的场景,需要考虑 state ttl 时间设置,设置太小数据经常关联不上,设置太大内存又需要很高才能保留,我们通过 Hudi 的方式来换个思路实现。

● 构建 catalog

public String createCatalog()
    String createCatalog = "CREATE CATALOG hudi_catalog WITH (\\n" +
            "    \'type\' = \'hudi\',\\n" +
            "    \'mode\' = \'hms\',\\n" +
            "    \'default-database\' = \'default\',\\n" +
            "    \'hive.conf.dir\' = \'/hive_conf_dir\',\\n" +
            "    \'table.external\' = \'true\'\\n" +
            ")";

    return createCatalog;

● 创建 hudi 表

public String createHudiTable()

    String createTable = "CREATE TABLE if not exists hudi_catalog.flink_db.test_hudi_flink_join_2 (\\n" +
            "  id int ,\\n" +
            "  name VARCHAR(10),\\n" +
            "  age int ,\\n" +
            "  address VARCHAR(10),\\n" +
            "  dt VARCHAR(10),\\n" +
            "  primary key(id) not enforced\\n" +
            ")\\n" +
            "PARTITIONED BY (dt)\\n" +
            "WITH (\\n" +
            "  \'connector\' = \'hudi\',\\n" +
            "  \'table.type\' = \'MERGE_ON_READ\',\\n" +
            "  \'changelog.enabled\' = \'true\',\\n" +
            "  \'index.type\' = \'BUCKET\',\\n" +
            "  \'hoodie.bucket.index.num.buckets\' = \'2\',\\n" +
            String.format("  \'%s\' = \'%s\',\\n", FlinkOptions.PRECOMBINE_FIELD.key(), FlinkOptions.NO_PRE_COMBINE) +
            "  \'write.payload.class\' = \'" + PartialUpdateAvroPayload.class.getName() + "\'\\n" +

    ");";

    return createTable;

● 更新 hudi 表的 flink_db.test_hudi_flink_join_2 的 id, name, age, dt 列

01 从 kafka 中读取 topic1

public String createKafkaTable1()
    String kafkaSource1 = "CREATE TABLE source1\\n" +
            "(\\n" +
            "    id        INT,\\n" +
            "    name      STRING,\\n" +
            "    age        INT,\\n" +
            "    dt        String,\\n" +
            "    PROCTIME AS PROCTIME()\\n" +
            ") WITH (\\n" +
            "      \'connector\' = \'kafka\'\\n" +
            "      ,\'topic\' = \'join_topic1\'\\n" +
            "      ,\'properties.bootstrap.servers\' = \'localhost:9092\'\\n" +
            "      ,\'scan.startup.mode\' = \'earliest-offset\'\\n" +
            "      ,\'format\' = \'json\'\\n" +
            "      ,\'json.timestamp-format.standard\' = \'SQL\'\\n" +
            "      )";

    return kafkaSource1;

02 从 kafka 中读取 topic2

public String createKafkaTable2()
    String kafkaSource2 = "CREATE TABLE source2\\n" +
            "(\\n" +
            "    id        INT,\\n" +
            "    name      STRING,\\n" +
            "    address        string,\\n" +
            "    dt        String,\\n" +
            "    PROCTIME AS PROCTIME()\\n" +
            ") WITH (\\n" +
            "      \'connector\' = \'kafka\'\\n" +
            "      ,\'topic\' = \'join_topic2\'\\n" +
            "      ,\'properties.bootstrap.servers\' = \'localhost:9092\'\\n" +
            "      ,\'scan.startup.mode\' = \'earliest-offset\'\\n" +
            "      ,\'format\' = \'json\'\\n" +
            "      ,\'json.timestamp-format.standard\' = \'SQL\'\\n" +
            "      )";

    return kafkaSource2;

● 执行插入逻辑1

String insertSQL = "insert into hudi_catalog.flink_db.test_hudi_flink_join_2(id,name,age,dt) " +
        "select id, name,age,dt from source1";

● 通过 spark 查询数据

20230323090605515 20230323090605515_1_186 45 1 c990a618-896c-4627-8243-baace65c7ad6-0_0-21-26_20230331101342388.parquet 45 xc 45 NULL 1

20230323090605515 20230323090605515_1_179 30 1 c990a618-896c-4627-8243-baace65c7ad6-0_0-21-26_20230331101342388.parquet 30 xc 30 NULL 1

● 执行插入逻辑2

String insertSQL = "insert into hudi_catalog.flink_db.test_hudi_flink_join_2(id,name,address,dt) " +
        "select id, name, address,dt from source2";

● 运行成功

运行成功后在 spark 中查询对应的表数据:

20230323090605515 20230323090605515_1_186 45 1 c990a618-896c-4627-8243-baace65c7ad6-0_0-21-26_20230331101342388.parquet 45 xc 45 xc:address45 1

20230323090605515 20230323090605515_1_179 30 1 c990a618-896c-4627-8243-baace65c7ad6-0_0-21-26_20230331101342388.parquet 30 xc 30 xc:address30 1

可以发现在第二次数据运行之后,表数据的对应字段 address 已经更新,达到了类似在 Flink 中直接执行 join 的效果。

`insert into hudi_catalog.flink_db.test_hudi_flink_join_2

select a.id, a.name, a.age,b.address a.dt from source1 a left join source2 b on a.id = b.id `

《数栈产品白皮书》:https://www.dtstack.com/resources/1004?src=szsm

《数据治理行业实践白皮书》下载地址:https://www.dtstack.com/resources/1001?src=szsm

想了解或咨询更多有关袋鼠云大数据产品、行业解决方案、客户案例的朋友,浏览袋鼠云官网:https://www.dtstack.com/?src=szbky

同时,欢迎对大数据开源项目有兴趣的同学加入「袋鼠云开源框架钉钉技术qun」,交流最新开源技术信息,qun号码:30537511,项目地址:https://github.com/DTStack

百信银行基于 Apache Hudi 实时数据湖演进方案

简介:本文介绍了百信银行实时计算平台的建设情况,实时数据湖构建在 Hudi 上的方案和实践方法,以及实时计算平台集成 Hudi 和使用 Hudi 的方式。

本文介绍了百信银行实时计算平台的建设情况,实时数据湖构建在 Hudi 上的方案和实践方法,以及实时计算平台集成 Hudi 和使用 Hudi 的方式。内容包括:

  1. 背景
  2. 百信银行基于 Flink 的实时计算平台设计与实践
  3. 百信银行实时计算平台与实时数据湖的集成实践
  4. 百信银行实时数据湖的未来
  5. 总结

GitHub 地址
https://github.com/apache/flink
欢迎大家给 Flink 点赞送 star~

一、背景

百信银行,全称为 “中信百信银行股份有限公司”,是首家获批独立法人形式的直销银行。作为首家国有控股的互联网银行,相比于传统金融行业,百信银行对数据敏捷性有更高的要求。

数据敏捷,不仅要求数据的准确性,还要求数据到达的实时性,和数据传输的安全性。为了满足我行数据敏捷性的需求,百信银行大数据部承担起了建设实时计算平台的职责,保证了数据快速,安全且标准得在线送达。

受益于大数据技术的发展和更新迭代,目前广为人知的批流一体的两大支柱分别是:“统一计算引擎” 与 “统一存储引擎”。

  • Flink,作为大数据实时计算领域的佼佼者,1.12 版本的发布让它进一步提升了统一计算引擎的能力;
  • 同时随着数据湖技术 Hudi 的发展,统一存储引擎也迎来了新一代技术变革。

在 Flink 和 Hudi 社区发展的基础上,百信银行构建了实时计算平台,同时将实时数据湖 Hudi 集成到实时计算平台之上。结合行内数据治理的思路,实现了数据实时在线、安全可靠、标准统一,且有敏捷数据湖的目标。

二、百信银行基于 Flink 的实时计算平台设计与实践

1. 实时计算平台的定位

实时计算平台作为行级实时计算平台,由大数据 IaaS 团队自主研发,是一款实现了实时数据 ”端到端“ 的在线数据加工处理的企业级产品。

  • 其核心功能具备了实时采集、实时计算、实时入库、复杂时间处理、规则引擎、可视化管理、一键配置、自主上线,和实时监控预警等。
  • 目前其支持的场景有实时数仓、断点召回、智能风控、统一资产视图、反欺诈,和实时特征变量加工等。
  • 并且,它服务着行内小微、信贷、反欺诈、消金、财务,和风险等众多业务线。

截止目前,在线稳定运行的有 320+ 的实时任务,且在线运行的任务 QPS 日均达到 170W 左右。

2. 实时计算平台的架构

按照功能来划分的话,实时计算平台的架构主要分为三层:

■ 1)数据采集层

采集层目前主要分为两个场景:

  • 第一个场景是采集 MySQL 备库的 Binlog 日志到 Kafka 中。我行所使用的数据采集方案并没有采用业界普遍用的如 Canal,Debezium 等现有的 CDC 方案。

    1、因为我们的 MySQL 版本为百信银行内部的版本,Binlog 协议有所不同,所以现有的技术方案不能很好的支持兼容我们获取 Binlog 日志。

    2、同时,为了解决我们数据源 MySQL 的备库随时可能因为多机房切换,而造成采集数据丢失的情况。我们自研了读取 MySQL Binlog 的 Databus 项目,我们也将 Databus 逻辑转化成了 Flink 应用程序,并将其部署到了 Yarn 资源框架中,使 Databus 数据抽取可以做到高可用,且资源可控。

  • 第二个场景是,我们对接了第三方的应用,这个第三方应用会将数据写入 Kafka,而写入 Kafka 有两种方式:

    1、一种方式是依据我们定义的 Json shcema 协议。

(UMF协议:{col_name:””,umf_id":"","umf_ts":,"umf_op_":"i/u/d"})
协议定义了 ”唯一 id”,”时间戳“ 和 ”操作类型“。根据此协议,用户可以指定对该消息的操作类型,分别是 "insert","update" 和 "delete",以便下游对消息进行针对性处理。

  2、另外一种方式,用户直接把 JSON 类型的数据写到 kafka 中,不区分操作类型。

■ 2)数据计算转换层

消费 Kafka 数据进行一层转换逻辑,支持用户自定义函数,将数据标准化,做敏感数据的脱敏加密等。

■ 3)数据存储层

数据存储到 HDFS,Kudu,TiDB,Kafka,Hudi,MySQL 等储存介质中。

image.png

在上图所示的架构图中,我们可以看到整体实时计算平台支持的主要功能有:

  • 开发层面:

    1、支持标准化的 DataBus 采集功能,该功能对于支持 MySQL Binglog 同步到 Kafka 做了同步适配,不需要用户干预配置过多。用户只需要指定数据源 MySQL 的实例就可以完成到 Kafka 的标准化同步。
    2、支持用户可视化编辑 FlinkSQL。
    3、支持用户自定义 Flink UDF 函数。
    4、支持复杂事件处理(CEP)。
    5、支持用户上传打包编译好 Flink 应用程序。

  • 运维层面:

    1、支持不同类型任务的状态管理,支持savepoint。
    2、支持端到端的延迟监控,告警。

在实时计算平台升级迭代的过程中,社区 Flink 版本之间存在一些向下不兼容的情况。为了平滑的升级 Flink 版本,我们对计算引擎的多版本模块进行统一的抽象,将多版本之间做了严格的 JVM 级别隔离,使版本之间不会产生 Jar 包冲突,Flink Api 不兼容的情况。

image.png

如上图所示,我们将不同的 Flink 版本封装到一个独立的虚拟机中,使用 Thrift Server 启动一个独立的 JVM 虚拟机,每个版本的 Flink 都会有一个独立的 Thrift Server。在使用的过程中,只要用户显示指定的 Flink 版本,Flink 应用程序就会被指定的 Thrift Server 启动。同时,我们也将实时计算的后端服务嵌入一个常用的 Flink 版本,避免因为启动 Thrift Server 而占用过多的启动时间。

同时为了满足金融系统高可用和多备的需求,实时计算平台也开发了多 Hadoop 集群的支持,支持实时计算任务在失败后可以迁移到备集群上去。整体的方案是,支持多集群 checkpoint,savepoint,支持任务失败后,可以在备机房重启实时任务。

三、百信银行实时计算平台与实时数据湖集成实践

在介绍本内容之前,我们先来了解一些我行目前在数据湖的现状。目前的实时数据湖,我行依然采用主流的 Lambda 架构来构建数据仓库。

image.png

1. Lambda

Lambda 架构下,数仓的缺点:

  • 同样的需求,开发和维护两套代码逻辑:批和流两套逻辑代码都需要开发和维护,并且需要维护合并的逻辑,且需同时上线;
  • 计算和存储资源占用多:同样的计算逻辑计算两次,整体资源占用会增多;
  • 数据具有二义性:两套计算逻辑,实时数据和批量数据经常对不上,准确性难以分辨;
  • 重用 Kafka 消息队列:Kafka 保留往往按照天或者月保留,不能全量保留数据,无法使用现有的 adhoc 查询引擎分析。

2. Hudi

为了解决 Lambda 架构的痛点,我行准备了新一代的数据湖技术架构,同时我们也花大量的时间调研了现有的数据湖技术,最终选择 Hudi 作为我们的存储引擎。

  • Update / Delete 记录:Hudi 使用细粒度的文件/记录级别索引,来支持 Update / Delete 记录,同时还提供写操作的事务保证,支持 ACID 语义。查询会处理最后一个提交的快照,并基于此输出结果;
  • 变更流:Hudi 对获取数据变更提供了流的支持,可以从给定的时间点获取给定表中已 updated / inserted / deleted 的所有记录的增量流,可以查询不同时间的状态数据;
  • 技术栈统一:可以兼容我们现有的 adhoc 查询引擎 presto,spark。
  • 社区更新迭代速度快:已经支持 Flink 两种不同方式的的读写操作,如 COW 和 MOR。

image.png

在新的架构中可以看到,我们将实时和批处理贴源层的数据全部写到 Hudi 存储中,并重新写入到新的数据湖层 datalake(Hive 的数据库)。出于历史的原因,为了兼容之前的数据仓库的模型,我们依然保留之前的 ODS 层,历史的数仓模型保持不变,只不过 ODS 贴源层的数据需要从 datalake 层获取。

image.png

  • 首先,我们可以看到,对于新的表的入仓逻辑,我们通过实时计算平台使用 Flink 写入到 datalake 中(新的贴源层,Hudi 格式存储),数据分析师和数据科学家,可以直接使用 datalake 层的数据进行数据分析和机器学习建模。如果数据仓库的模型需要使用 datalake 的数据源,需要一层转换 ODS 的逻辑,这里的转换逻辑分为两种情况:

    1、第一种,对于增量模型,用户只需要将最新 datalake 的分区使用快照查询放到 ODS 中即可。
    2、第二种,对于全量模型,用户需要把 ODS 前一天的快照和 datalake 最新的快照查询的结果进行一次合并,形成最新的快照再放到 ODS 当前的分区中,以此类推。

我们这么做的原因是,对于现有的数仓模型不用改造,只是把 ODS 的数据来源换成 datalake,时效性强。同时满足了数据分析和数据科学家准实时获取数据的诉求。

  • 另外,对于原始的 ODS 存在的数据,我们开发了将 ODS 层的数据进行了一次初始化入 datalake 的脚本。

    1、如果 ODS 层数据每天是全量的快照,我们只将最新的一次快照数据初始化到 datalake 的相同分区,然后实时入 datalake 的链路接入;
    2、如果 ODS 层的数据是增量的,我们暂时不做初始化,只在 datalake 中重新建一个实时入湖的链路,然后每天做一次增量日切到 ODS 中。

  • 最后,如果是一次性入湖的数据,我们使用批量入湖的工具导入到 datalake 中即可。

整体湖仓转换的逻辑如图:

image.png

3. 技术挑战

  • 在我们调研的初期,Hudi 对 Flink 的支持不是很成熟,我们对 Spark - StrunctStreaming 做了大量的开发和测试。从我们 PoC 测试结果上看,

    1、如果使用无分区的 COW 写入的方式,在千万级写入量的时候会发现写入越来越慢;
    2、后来我们将无分区的改为增量分区的方式写入,速度提升了很多。

之所以会产生这个问题,是因为 spark 在写入时会读取 basefile 文件索引,文件越大越多,读取文件索引就会越慢,因此会产生写入越来越慢的情况。

  • 同时,随着 Flink 对 hudi 支持越来越好,我们的目标是打算将 Hudi 入湖的功能集成到实时计算平台。因此,我们把实时计算平台对 Hudi 做了集成和测试,期间也遇到一些问题,典型的问题有:

    1、类冲突
    2、不能找到 class 文件
    3、rocksdb 冲突

为了解决这些不兼容的问题,我们将对 Hudi 的依赖,重新构造了一个独立的模块,这个工程只是把 Hudi 的依赖打包成一个 shade package。

  4、当有依赖冲突时,我们会把 Flink 模块相关或者 Hudi 模块相关的冲突依赖 exclude 掉。
  5、而如果有其他依赖包找不到的情况,我们会把相关的依赖通过 pom 文件引入进来。
  • 在使用 Hudi on Flink 的方案中,也遇到了相关的问题,比如,checkpoint 太大导致 checkpoint 时间过长而引起的失败。这个问题,我们设置状态的 TTL 时间,把全量 checkpoint 改为增量 checkpoint,且提高并行度来解决。
  • COW 和 MOR 的选择。目前我们使用的 Hudi 表以 COW 居多,之所以选择 COW,

    1、第一是因为我们目前历史存量 ODS 的数据都是一次性导入到 datalake 数据表中,不存在写放大的情况。
    2、另外一个原因是,COW 的工作流比较简单,不会涉及到 compaction 这样的额外操作。

如果是新增的 datalake 数据,并且存在大量的 update,并且实时性要求较高的情况下,我们更多的选择 MOR 格式来写,尤其写 QPS 比较大的情况下,我们会采用异步 compaction 的操作,避免写放大。除了这种情况外,我们还是会更倾向以 COW 的格式来写。

四、百信银行实时数据湖的未来

在我行实时数据湖的架构中,我们的目标是将实时数仓的整个链路构建在Hudi之上,架构体系如图:

image.png

我们整体的目标规划是替代 kafka,把 Hudi 作为中间存储,将数仓建设在 Hudi 之上,并以 Flink 作为流批一体计算引擎。这样做的好处有:

  • MQ 不再担任实时数据仓库存储的中间存储介质,而 Hudi 存储在 HDFS 上,可以存储海量数据集;
  • 实时数据仓库中间层可以使用 OLAP 分析引擎查询中间结果数据;
  • 真正意义上的批流一体,数据 T+1 延迟的问题得到解决;
  • 读时 Schema 不再需要严格定义 Schema 类型,支持 schema evolution;
  • 支持主键索引,数据查询效率数倍增加,并且支持 ACID 语义,保证数据不重复不丢失;
  • Hudi 具有 Timeline 的功能,可以更多存储数据中间的状态数据,数据完备性更强。

五、总结

本文介绍了百信银行实时计算平台的建设情况,实时数据湖构建在 Hudi 上的方案和实践方法,以及实时计算平台集成 Hudi 和使用 Hudi 的方式。

在使用 Hudi 的过程中,也遇到一些问题,由衷感谢社区同学的帮助。特别感谢社区 Danny chan,leesf 解疑答惑。在实时数据湖架构体系下,构建我们实时数仓,流批一体方案还是在摸索中。

仅以此篇,希望能给其他正在建设实时计算平台,和使用 Hudi 构建实时数据湖的同学提供一些参考。我们也诚恳邀请对实时计算平台和实时数据湖有浓厚兴趣的同学加入我们,投递简历的方式如下。

image.png


原文链接:https://developer.aliyun.com/article/783950?

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

以上是关于Apache Hudi 在袋鼠云数据湖平台的设计与实践的主要内容,如果未能解决你的问题,请参考以下文章

Apache Hudi:云数据湖解决方案

技术干货|基于Apache Hudi 的CDC数据入湖

百信银行基于 Apache Hudi 实时数据湖演进方案

百信银行基于 Apache Hudi 实时数据湖演进方案

Hudi Bucket Index 在字节跳动的设计与实践

Apache Hudi 在 B 站构建实时数据湖的实践