Python3-socket网络编程

Posted 追梦的肥猪

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python3-socket网络编程相关的知识,希望对你有一定的参考价值。

socket网络编程

  • socket是什么

  • 套接字分类

  • 套接字工作流程

  • 基于TCP的套接字

  • 基于UDP的套接字

  • 粘包现象

  • 什么是粘包

 

socket是什么

Socket是应用层与TCP/IP协议族通信的中间软件抽象层,它是一组接口。在设计模式中,Socket其实即使一个门面模式,他把复杂的TCP/IP协议族隐藏在Socket接口后面,对用户来说,一组简单接口就是全部,让Socket去组织数据,以符合指定的协议。

所以,我们无需深入理解tcp/udp协议,socket已经为我们封装好了,我们只需要遵循socket的规定去编程,写出的程序自然就是遵循tcp/udp标准的。

套接字分类

基于文件类型的套接字家族

套接字家族的名字:AF_UNIX

unix一切皆文件,基于文件的套接字调用的就是底层的文件系统来取数据,两个套接字进程运行在统一机器,可以通过访问同一个文件系统间接完成通信

基于网络类型的套接字家族

套接字家族的名字:AF_INET

(还有AF_INET6被用于ipv6,还有一些其他的地址家族,不过,他们要么是只用于某个平台,要么就是已经被废弃,或者是很少被使用,或者是根本没有实现,所有地址家族中,AF_INET是使用最广泛的一个,python支持很多种地址家族,但是由于我们只关心网络编程,所以大部分时候我么只使用AF_INET)

 

Socket Types 

socket.SOCK_STREAM  #for tcp

socket.SOCK_DGRAM   #for udp 

socket.SOCK_RAW   #原始套接字,普通的套接字无法处理ICMP、IGMP等网络报文,而SOCK_RAW可以;其次,SOCK_RAW也可以处理特殊的IPv4报文;

socket.SOCK_SOCKRDM  # 是一种可靠的UDP形式,即保证交付数据报但不保证顺序。

 

套接字工作流程

服务端先初始化socket,然后与端口绑定(bind),对端口进行监听(listen),调用accept阻塞,等待客户端连接。在这时如果有个客户端初始化一个socket,然后连接服务器(connect),如果连接成功,这时客户端与服务器的连接就建立了。

客户端发送数据请求,服务器端接受请求并处理请求,然后把回应数据发送给客户端,客户端读取数据,最后关闭连接,一次交互结束。

socket()模块函数用法

import socket
socket.socket(socket_family,socket_type,protocal=0)
socket_family 可以是 AF_UNIX 或 AF_INET。socket_type 可以是 SOCK_STREAM 或 SOCK_DGRAM。protocol 一般不填,默认值为 0。

获取tcp/ip套接字
tcpSock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

获取udp/ip套接字
udpSock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

由于 socket 模块中有太多的属性。我们在这里破例使用了\'from module import *\'语句。使用 \'from socket import *\',我们就把 socket 模块里的所有属性都带到我们的命名空间里了,这样能 大幅减短我们的代码。
例如tcpSock = socket(AF_INET, SOCK_STREAM)
服务端套接字函数
s.bind() 绑定(主机,端口号)到套接字
s.listen() 开始TCP监听
s.accept() 被动接受TCP客户的连接,(阻塞式)等待连接的到来

客户端套接字函数
s.connect() 主动初始化TCP服务器连接
s.connect_ex() connect()函数的扩展版本,出错时返回出错码,而不是抛出异常

 

公共用途的套接字函数
s.recv() 接收TCP数据
s.send() 发送TCP数据(send在待发送数据量大于己端缓存区剩余空间时,数据丢失,不会发完)
s.sendall() 发送完整的TCP数据(本质就是循环调用send,sendall在待发送数据量大于己端缓存区剩余空间时,数据不丢失,循环调用send直到发完)
s.recvfrom() 接收UDP数据
s.sendto() 发送UDP数据
s.getpeername() 连接到当前套接字的远端的地址
s.getsockname() 当前套接字的地址
s.getsockopt() 返回指定套接字的参数
s.setsockopt() 设置指定套接字的参数
s.close() 关闭套接字

面向锁的套接字方法
s.setblocking() 设置套接字的阻塞与非阻塞模式
s.settimeout() 设置阻塞套接字操作的超时时间
s.gettimeout() 得到阻塞套接字操作的超时时间

面向文件的套接字的函数
s.fileno() 套接字的文件描述符
s.makefile() 创建一个与该套接字相关的文件


基于TCP的套接字

tcp是基于链接的,必须先启动服务端,然后再启动客户端去连接服务端

tcp服务端

ss = socket() #创建服务器套接字
ss.bind()      #把地址绑定到套接字
ss.listen()      #监听链接
inf_loop:      #服务器无限循环
    cs = ss.accept() #接受客户端链接
    comm_loop:         #通讯循环
        cs.recv()/cs.send() #对话(接收与发送)
    cs.close()    #关闭客户端套接字
ss.close()        #关闭服务器套接字(可选)

tcp客户端

1 cs = socket()    # 创建客户套接字
2 cs.connect()    # 尝试连接服务器
3 comm_loop:        # 通讯循环
4     cs.send()/cs.recv()    # 对话(发送/接收)
5 cs.close()            # 关闭客户套接字

 

socket通信流程与打电话流程类似,我们就以打电话为例来实现一个low版的套接字通信

import socket
ip_port=(\'127.0.0.1\',9000)  #电话卡
BUFSIZE=1024                #收发消息的尺寸
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM) #买手机
s.bind(ip_port) #手机插卡
s.listen(5)     #手机待机


conn,addr=s.accept()            #手机接电话
# print(conn)
# print(addr)
print(\'接到来自%s的电话\' %addr[0])

msg=conn.recv(BUFSIZE)             #听消息,听话
print(msg,type(msg))

conn.send(msg.upper())          #发消息,说话

conn.close()                    #挂电话

s.close()                       #手机关机

服务端
服务端
#_*_coding:utf-8_*_
__author__ = \'Linhaifeng\'
import socket
ip_port=(\'127.0.0.1\',9000)
BUFSIZE=1024
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)

s.connect_ex(ip_port)           #拨电话

s.send(\'linhaifeng nb\'.encode(\'utf-8\'))         #发消息,说话(只能发送字节类型)

feedback=s.recv(BUFSIZE)                           #收消息,听话
print(feedback.decode(\'utf-8\'))

s.close()                                       #挂电话

客户端
客户端

加上链接循环与通信循环

#_*_coding:utf-8_*_
__author__ = \'Linhaifeng\'
import socket
ip_port=(\'127.0.0.1\',8081)#电话卡
BUFSIZE=1024
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM) #买手机
s.bind(ip_port) #手机插卡
s.listen(5)     #手机待机


while True:                         #新增接收链接循环,可以不停的接电话
    conn,addr=s.accept()            #手机接电话
    # print(conn)
    # print(addr)
    print(\'接到来自%s的电话\' %addr[0])
    while True:                         #新增通信循环,可以不断的通信,收发消息
        msg=conn.recv(BUFSIZE)             #听消息,听话

        # if len(msg) == 0:break        #如果不加,那么正在链接的客户端突然断开,recv便不再阻塞,死循环发生

        print(msg,type(msg))

        conn.send(msg.upper())          #发消息,说话

    conn.close()                    #挂电话

s.close()                       #手机关机
升级版服务端
#_*_coding:utf-8_*_
__author__ = \'Linhaifeng\'
import socket
ip_port=(\'127.0.0.1\',8081)
BUFSIZE=1024
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)

s.connect_ex(ip_port)           #拨电话

while True:                             #新增通信循环,客户端可以不断发收消息
    msg=input(\'>>: \').strip()
    if len(msg) == 0:continue
    s.send(msg.encode(\'utf-8\'))         #发消息,说话(只能发送字节类型)

    feedback=s.recv(BUFSIZE)                           #收消息,听话
    print(feedback.decode(\'utf-8\'))

s.close()                                       #挂电话

客户端改进版
升级版客户端

 

问题:

在重启服务端时可能会遇到

 这个是由于你的服务端仍然存在四次挥手的time_wait状态在占用地址(如果不懂,请深入研究:1.tcp三次握手,四次挥手  2.syn洪水攻击  3.服务器高并发情况下会有大量的time_wait状态的优化方法)

解决方法:

#加入一条socket配置,重用ip和端口

phone=socket(AF_INET,SOCK_STREAM)
phone.setsockopt(SOL_SOCKET,SO_REUSEADDR,1) #就是它,在bind前加
phone.bind((\'127.0.0.1\',8080))
1
发现系统存在大量TIME_WAIT状态的连接,通过调整linux内核参数解决,
vi /etc/sysctl.conf

编辑文件,加入以下内容:
net.ipv4.tcp_syncookies = 1
net.ipv4.tcp_tw_reuse = 1
net.ipv4.tcp_tw_recycle = 1
net.ipv4.tcp_fin_timeout = 30
 
然后执行 /sbin/sysctl -p 让参数生效。
 
net.ipv4.tcp_syncookies = 1 表示开启SYN Cookies。当出现SYN等待队列溢出时,启用cookies来处理,可防范少量SYN攻击,默认为0,表示关闭;

net.ipv4.tcp_tw_reuse = 1 表示开启重用。允许将TIME-WAIT sockets重新用于新的TCP连接,默认为0,表示关闭;

net.ipv4.tcp_tw_recycle = 1 表示开启TCP连接中TIME-WAIT sockets的快速回收,默认为0,表示关闭。

net.ipv4.tcp_fin_timeout 修改系統默认的 TIMEOUT 时间
2

 

基于UDP的套接字

udp是无链接的,先启动哪一端都不会报错

udp服务端

1 ss = socket()   #创建一个服务器的套接字
2 ss.bind()       #绑定服务器套接字
3 inf_loop:       #服务器无限循环
4     cs = ss.recvfrom()/ss.sendto() # 对话(接收与发送)
5 ss.close()           

udp客户端

cs = socket()   # 创建客户套接字
comm_loop:      # 通讯循环
    cs.sendto()/cs.recvfrom()   # 对话(发送/接收)
cs.close()   

udp套接字简单示例

#_*_coding:utf-8_*_
__author__ = \'Linhaifeng\'
import socket
ip_port=(\'127.0.0.1\',9000)
BUFSIZE=1024
udp_server_client=socket.socket(socket.AF_INET,socket.SOCK_DGRAM)

udp_server_client.bind(ip_port)

while True:
    msg,addr=udp_server_client.recvfrom(BUFSIZE)
    print(msg,addr)

    udp_server_client.sendto(msg.upper(),addr)
udp服务端
#_*_coding:utf-8_*_
__author__ = \'Linhaifeng\'
import socket
ip_port=(\'127.0.0.1\',9000)
BUFSIZE=1024
udp_server_client=socket.socket(socket.AF_INET,socket.SOCK_DGRAM)

while True:
    msg=input(\'>>: \').strip()
    if not msg:continue

    udp_server_client.sendto(msg.encode(\'utf-8\'),ip_port)

    back_msg,addr=udp_server_client.recvfrom(BUFSIZE)
    print(back_msg.decode(\'utf-8\'),addr)
udp客户端

qq聊天(由于udp无连接,所以可以同时多个客户端去跟服务端通信)

#_*_coding:utf-8_*_
__author__ = \'Linhaifeng\'
import socket
ip_port=(\'127.0.0.1\',8081)
udp_server_sock=socket.socket(socket.AF_INET,socket.SOCK_DGRAM) #买手机
udp_server_sock.bind(ip_port)

while True:
    qq_msg,addr=udp_server_sock.recvfrom(1024)
    print(\'来自[%s:%s]的一条消息:\\033[1;44m%s\\033[0m\' %(addr[0],addr[1],qq_msg.decode(\'utf-8\')))
    back_msg=input(\'回复消息: \').strip()

    udp_server_sock.sendto(back_msg.encode(\'utf-8\'),addr)
udp服务端
#_*_coding:utf-8_*_
__author__ = \'Linhaifeng\'
import socket
BUFSIZE=1024
udp_client_socket=socket.socket(socket.AF_INET,socket.SOCK_DGRAM)

qq_name_dic={
    \'狗哥alex\':(\'127.0.0.1\',8081),
    \'瞎驴\':(\'127.0.0.1\',8081),
    \'一棵树\':(\'127.0.0.1\',8081),
    \'武大郎\':(\'127.0.0.1\',8081),
}


while True:
    qq_name=input(\'请选择聊天对象: \').strip()
    while True:
        msg=input(\'请输入消息,回车发送: \').strip()
        if msg == \'quit\':break
        if not msg or not qq_name or qq_name not in qq_name_dic:continue
        udp_client_socket.sendto(msg.encode(\'utf-8\'),qq_name_dic[qq_name])

        back_msg,addr=udp_client_socket.recvfrom(BUFSIZE)
        print(\'来自[%s:%s]的一条消息:\\033[1;44m%s\\033[0m\' %(addr[0],addr[1],back_msg.decode(\'utf-8\')))

udp_client_socket.close()

udp客户端1
udp客户端1
#_*_coding:utf-8_*_
__author__ = \'Linhaifeng\'
import socket
BUFSIZE=1024
udp_client_socket=socket.socket(socket.AF_INET,socket.SOCK_DGRAM)

qq_name_dic={
    \'狗哥alex\':(\'127.0.0.1\',8081),
    \'瞎驴\':(\'127.0.0.1\',8081),
    \'一棵树\':(\'127.0.0.1\',8081),
    \'武大郎\':(\'127.0.0.1\',8081),
}


while True:
    qq_name=input(\'请选择聊天对象: \').strip()
    while True:
        msg=input(\'请输入消息,回车发送: \').strip()
        if msg == \'quit\':break
        if not msg or not qq_name or qq_name not in qq_name_dic:continue
        udp_client_socket.sendto(msg.encode(\'utf-8\'),qq_name_dic[qq_name])

        back_msg,addr=udp_client_socket.recvfrom(BUFSIZE)
        print(\'来自[%s:%s]的一条消息:\\033[1;44m%s\\033[0m\' %(addr[0],addr[1],back_msg.decode(\'utf-8\')))

udp_client_socket.close()

udp客户端2
udp客户端2

 

 

粘包现象

让我们基于tcp先制作一个远程执行命令的程序(1:执行错误命令 2:执行ls 3:执行ifconfig)

注意注意注意:

res=subprocess.Popen(cmd.decode(\'utf-8\'),
shell=True,
stderr=subprocess.PIPE,
stdout=subprocess.PIPE)

的结果的编码是以当前所在的系统为准的,如果是windows,那么res.stdout.read()读出的就是GBK编码的,在接收端需要用GBK解码

且只能从管道里读一次结果

注意:命令ls -l ; lllllll ; pwd 的结果是既有正确stdout结果,又有错误stderr结果

#_*_coding:utf-8_*_
__author__ = \'Linhaifeng\'
from socket import *
import subprocess

ip_port=(\'127.0.0.1\',8080)
BUFSIZE=1024

tcp_socket_server=socket(AF_INET,SOCK_STREAM)
tcp_socket_server.bind(ip_port)
tcp_socket_server.listen(5)

while True:
    conn,addr=tcp_socket_server.accept()
    print(\'客户端\',addr)

    while True:
        cmd=conn.recv(BUFSIZE)
        if len(cmd) == 0:break

        res=subprocess.Popen(cmd.decode(\'utf-8\'),shell=True,
                         stdout=subprocess.PIPE,
                         stdin=subprocess.PIPE,
                         stderr=subprocess.PIPE)

        stderr=act_res.stderr.read()
        stdout=act_res.stdout.read()
        conn.send(stderr)
        conn.send(stdout)
服务端
#_*_coding:utf-8_*_
__author__ = \'Linhaifeng\'
import socket
BUFSIZE=1024
ip_port=(\'127.0.0.1\',8080)

s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
res=s.connect_ex(ip_port)

while True:
    msg=input(\'>>: \').strip()
    if len(msg) == 0:continue
    if msg == \'quit\':break

    s.send(msg.encode(\'utf-8\'))
    act_res=s.recv(BUFSIZE)

    print(act_res.decode(\'utf-8\'),end=\'\')
客户端

上述程序是基于tcp的socket,在运行时会发生粘包

 

让我们再基于udp制作一个远程执行命令的程序

#_*_coding:utf-8_*_
__author__ = \'Linhaifeng\'

#_*_coding:utf-8_*_
__author__ = \'Linhaifeng\'
from socket import *
import subprocess

ip_port=(\'127.0.0.1\',9003)
bufsize=1024

udp_server=socket(AF_INET,SOCK_DGRAM)
udp_server.bind(ip_port)

while True:
    #收消息
    cmd,addr=udp_server.recvfrom(bufsize)
    print(\'用户命令----->\',cmd)

    #逻辑处理
    res=subprocess.Popen(cmd.decode(\'utf-8\'),shell=True,stderr=subprocess.PIPE,stdin=subprocess.PIPE,stdout=subprocess.PIPE)
    stderr=res.stderr.read()
    stdout=res.stdout.read()

    #发消息
    udp_server.sendto(stderr,addr)
    udp_server.sendto(stdout,addr)
udp_server.close()

服务端
udp服务端
from socket import *
ip_port=(\'127.0.0.1\',9003)
bufsize=1024

udp_client=socket(AF_INET,SOCK_DGRAM)


while True:
    msg=input(\'>>: \').strip()
    udp_client.sendto(msg.encode(\'utf-8\'),ip_port)

    data,addr=udp_client.recvfrom(bufsize)
    print(data.decode(\'utf-8\'),end=\'\')

客户端
udp客户端

上述程序是基于udp的socket,在运行时永远不会发生粘包

 

什么是粘包

须知:只有TCP有粘包现象,UDP永远不会粘包,

socket收发消息的原理

发送端可以是一K一K地发送数据,而接收端的应用程序可以两K两K地提走数据,当然也有可能一次提走3K或6K数据,或者一次只提走几个字节的数据,也就是说,应用程序所看到的数据是一个整体,或说是一个流(stream),一条消息有多少字节对应用程序是不可见的,因此TCP协议是面向流的协议,这也是容易出现粘包问题的原因。而UDP是面向消息的协议,每个UDP段都是一条消息,应用程序必须以消息为单位提取数据,不能一次提取任意字节的数据,这一点和TCP是很不同的。怎样定义消息呢?可以认为对方一次性write/send的数据为一个消息,需要明白的是当对方send一条信息的时候,无论底层怎样分段分片,TCP协议层会把构成整条消息的数据段排序完成后才呈现在内核缓冲区。

例如基于tcp的套接字客户端往服务端上传文件,发送时文件内容是按照一段一段的字节流发送的,在接收方看了,根本不知道该文件的字节流从何处开始,在何处结束

所谓粘包问题主要还是因为接收方不知道消息之间的界限,不知道一次性提取多少字节的数据所造成的。

 此外,发送方引起的粘包是由TCP协议本身造成的,TCP为提高传输效率,发送方往往要收集到足够多的数据后才发送一个TCP段。若连续几次需要send的数据都很少,通常TCP会根据优化算法把这些数据合成一个TCP段后一次发送出去,这样接收方就收到了粘包数据。(间隔短,数据小)

  1. TCP(transport control protocol,传输控制协议)是面向连接的,面向流的,提供高可靠性服务。收发两端(客户端和服务器端)都要有一一成对的socket,因此,发送端为了将多个发往接收端的包,更有效的发到对方,使用了优化方法(Nagle算法),将多次间隔较小且数据量小的数据,合并成一个大的数据块,然后进行封包。这样,接收端,就难于分辨出来了,必须提供科学的拆包机制。 即面向流的通信是无消息保护边界的。
  2. UDP(user datagram protocol,用户数据报协议)是无连接的,面向消息的,提供高效率服务。不会使用块的合并优化算法,, 由于UDP支持的是一对多的模式,所以接收端的skbuff(套接字缓冲区)采用了链式结构来记录每一个到达的UDP包,在每个UDP包中就有了消息头(消息来源地址,端口等信息),这样,对于接收端来说,就容易进行区分处理了。 即面向消息的通信是有消息保护边界的。
  3. tcp是基于数据流的,于是收发的消息不能为空,这就需要在客户端和服务端都添加空消息的处理机制,防止程序卡住,而udp是基于数据报的,即便是你输入的是空内容(直接回车),那也不是空消息,udp协议会帮你封装上消息头,实验略

udp的recvfrom是阻塞的,一个recvfrom(x)必须对唯一一个sendinto(y),收完了x个字节的数据就算完成,若是y>x数据就丢失,这意味着udp根本不会粘包,但是会丢数据,不可靠

tcp的协议数据不会丢,没有收完包,下次接收,会继续上次继续接收,己端总是在收到ack时才会清除缓冲区内容。数据是可靠的,但是会粘包。

 

两种情况下会发生粘包。

发送端需要等缓冲区满才发送出去,造成粘包(发送数据时间间隔很短,数据很小,会合到一起,产生粘包)

#_*_coding:utf-8_*_
__author__ = \'Linhaifeng\'
import socket
BUFSIZE=1024
ip_port=(\'127.0.0.1\',8080)

s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
res=s.connect_ex(ip_port)


s.send(\'hello\'.encode(\'utf-8\'))
s.send(\'feng\'.encode(\'utf-8\'))
客户端
#_*_coding:utf-8_*_
__author__ = \'Linhaifeng\'
from socket import *
ip_port=(\'127.0.0.1\',8080)

tcp_socket_server=socket(AF_INET,SOCK_STREAM)
tcp_socket_server.bind(ip_port)
tcp_socket_server.listen(5)


conn,addr=tcp_socket_server.accept()


data1=conn.recv(10)
data2=conn.recv(10)

print(\'----->\',data1.decode(\'utf-8\'))
print(\'----->\',data2.decode(\'utf-8\'))

conn.close()

服务端
服务端

接收方不及时接收缓冲区的包,造成多个包接收(客户端发送了一段数据,服务端只收了一小部分,服务端下次再收的时候还是从缓冲区拿上次遗留的数据,产生粘包)

#_*_coding:utf-8_*_
__author__ = \'Linhaifeng\'
import socket
BUFSIZE=1024
ip_port=(\'127.0.0.1\',8080)

s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
res=s.connect_ex(ip_port)


s.send(\'hello feng\'.encode(\'utf-8\'))
客户端
#_*_coding:utf-8_*_
__author__ = \'Linhaifeng\'
from socket import *
ip_port=(\'127.0.0.1\',8080)

tcp_socket_server=socket(AF_INET,SOCK_STREAM)
tcp_socket_server.bind(ip_port)
tcp_socket_server.listen(5)


conn,addr=tcp_socket_server.accept()


data1=conn.recv(2) #一次没有收完整
data2=conn.recv(10)#下次收的时候,会先取旧的数据,然后取新的

print(\'----->\',data1.decode(\'utf-8\'))
print(\'----->\',data2.decode(\'utf-8\'))

conn.close()

服务端
服务端

 

拆包的发生情况

当发送端缓冲区的长度大于网卡的MTU时,tcp会将这次发送的数据拆成几个数据包发送过去。

补充问题一:为何tcp是可靠传输,udp是不可靠传输

 

tcp在数据传输时,发送端先把数据发送到自己的缓存中,然后协议控制将缓存中的数据发往对端,对端返回一个ack=1,发送端则清理缓存中的数据,对端返回ack=0,则重新发送数据,所以tcp是可靠的

而udp发送数据,对端是不会返回确认信息的,因此不可靠

补充问题二:send(字节流)和recv(1024)及sendall

recv里指定的1024意思是从缓存里一次拿出1024个字节的数据

send的字节流是先

以上是关于Python3-socket网络编程的主要内容,如果未能解决你的问题,请参考以下文章

VSCode自定义代码片段9——JS中的面向对象编程

VSCode自定义代码片段14——Vue的axios网络请求封装

VSCode自定义代码片段14——Vue的axios网络请求封装

VSCode自定义代码片段14——Vue的axios网络请求封装

Python_网络编程_socket()

使用 Pygments 检测代码片段的编程语言