Python小数据池,代码块解析

Posted Big_Dinosaur

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python小数据池,代码块解析相关的知识,希望对你有一定的参考价值。

一、id,is,==

在Python中,id是什么?id是内存地址,比如你利用id()内置函数查询一个数据的内存地址:

name = \'太白\'
print(id(name))  # 1585831283968

那么is又是什么?==又是什么?

== 是比较两边的数值是否相等,而is是比较两边的内存地址是否相等。如果内存地址相等,那么这两边其实是指向同一个内存地址。

可以说如果内存地址相同,那么值肯定相同,但是如果值相同,内存地址不一定相同。

二、代码块

根据官网提示我们可以获知:

根据提示我们从官方文档找到了这样的说法:
A Python program is constructed from code blocks. A block is a piece of Python program text that is executed as a unit. The following are blocks: a module, a function body, and a class definition. Each command typed interactively is a block. A script file (a file given as standard input to the interpreter or specified as a command line argument to the interpreter) is a code block. A script command (a command specified on the interpreter command line with the ‘-c‘ option) is a code block. The string argument passed to the built-in functions eval() and exec() is a code block.
A code block is executed in an execution frame. A frame contains some administrative information (used for debugging) and determines where and how execution continues after the code block’s execution has completed.
View Code

上面的主要意思是:

Python程序是由代码块构造的。块是一个Python程序的文本,他是作为一个单元执行的。

代码块:一个模块,一个函数,一个类,一个文件都是一个代码块。

而作为交互方式输入的每个命令都是一个代码块。

什么叫交互方式?就是我们在cmd中进入Python解释器里面,每一行代码都是一个代码块,例如:

而对于一个文件中的两个函数,也分别是两个不同的代码块。

OK,那么现在我们就了解代码块,这和小数据池有什么关系呢?

代码块的缓存机制

Python在执行同一个代码块的初始化对象的命令时,会检查其值是否已经存在,如果存在,会将其重用。换句话说,执行同一个代码块时,遇到初始化对象的命令时,他会将初始化的这个变量与值存储在一个字典中,在遇到新的变量时,会先在字典中查询记录,如果有同样的记录那么它就会重复使用这个字典中的之前的这个值。所以在你给出的这个例子中,文件执行时(同一个代码块)会将i1,i2这两个变量指向同一个对象,满足缓存机制则它们在内存中只存在一个,即:id相同。

代码块的缓存机制的适用范围:int(float),str,bool。

int(bloat):任何数字在同一代码块下会重复使用。

bool:True和False在字典中会以1,0方式存在,并且重复用。

str:几乎所有的字符串都会符合缓存机制,具体规定如下(了解即可):

 1. 非乘法得到的字符串都满足代码块的缓存机制:

s1 = \'太白@!#*ewq\'
s2 = \'太白@!#*ewq\'
print(s1 is s2)  # True

2. 乘法得到的字符串分两种情况:

  2.1 乘数为1时

b1 = \'太白@5847395QQ0743895*&^%$#((&_+(())\' *1
a1 = \'太白@5847395QQ0743895*&^%$#((&_+(())\' *1

print(a1 is b1)  # True

  2.2 乘数为>=2时:仅含大小写字母,数字,下划线,总长度<=20,满足代码块的缓存机制:

s1 = \'old_\' * 5
s2 = \'old_\' * 5
print(s1 is s2)  # True

优点:能够提高一些字符串,整数处理人物在时间和空间上的性能;需要值相同的字符串,整数的时候,直接从 ‘字典’ 中取出复用,避免频繁的创建和销毁,提升效率,节约内存。

三、小数据池

小数据池,也称为小整数缓存机制,或者称为驻留机制等等,只要在网上查到的这些名字其实都是一个意思,叫法都是因人而异。

那么到底什么是小数据池?它有什么作用?

大前提:小数据池也是只针对int(float),str,bool。

小数据池是针对不同代码块之间的缓存机制

官方对于整数,字符串的小数据池是这么说的:

对于整数,Python官方文档中这么说:
The current implementation keeps an array of integer objects for all integers between -5 and 256, when you create an int in that range you actually just get back a reference to the existing object. So it should be possible to change the value of 1. I suspect the behaviour of Python in this case is undefined.

对于字符串:
Incomputer science, string interning is a method of storing only onecopy of each distinct string value, which must be immutable. Interning strings makes some stringprocessing tasks more time- or space-efficient at the cost of requiring moretime when the string is created or interned. The distinct values are stored ina string intern pool. –引自维基百科
View Code

Python自动将-5~256的整数进行了缓存,当你将这些整数赋值给变量时,并不会重新创建对象,而是使用已经创建好的缓存对象。

Python会将一定规则的字符串在字符串驻留池中,创建一份,当你将这些字符串赋值给变量时,并不会重新创建对象,而是在字符串驻留池中创建好的对象。

其实,无论是缓存还是字符串驻留池,都是Python做的一个优化,就是-5~256的整数,和一定规则的字符串,放在一个池(容器或者字典)中,无论程序中那些变量指向这些范围内的整数或者字符串,那么他直接在这个‘池’中引用,言外之意,就是内存中之创建一个。

优点:能够提高一些字符串,整数处理人物在时间和空间上的性能;需要值相同的字符串,整数的时候,直接从‘池’里拿来用,避免频繁的创建和销毁,提升效率,节约内存。

int:那么大家都知道对于整数来说,小数据池的范围是-5~256 ,如果多个变量都是指向同一个(在这个范围内的)数字,他们在内存中指向的都是一个内存地址。

 

 

那么对于字符串的规定呢?

str:字符串要从下面这几个大方向讨论(了解即可!):

1,字符串的长度为0或者1,默认都采用了驻留机制(小数据池)。

2,字符串的长度>1,且只含有大小写字母,数字,下划线时,才会默认驻留。

 

3,用乘法得到的字符串,分两种情况。

  3.1 乘数为1时:

仅含大小写字母,数字,下划线,默认驻留。

含其他字符,长度<=1,默认驻留。

含其他字符,长度>1,默认驻留。

  3.2 乘数>=2时:

仅含大小写字母,数字,下划线,总长度<=20,默认驻留。

 4. 指定驻留

from sys import intern
a = intern(\'hello!@\'*20)
b = intern(\'hello!@\'*20)
print(a is b)
#指定驻留是你可以指定任意的字符串加入到小数据池中,让其只在内存中创建一个对象,多个变量都是指向这一个字符串。

满足以上字符串的规则时,就符合小数据池的概念

bool值就是True,False,无论你创建多少个变量指向True,False,那么它在内存中只存在一个。

看一下用了小数据池(驻留机制)的效率有多高:

显而易见,节省大量内存在字符串比较时,非驻留比较效率0(n),驻留时比较效率o(l).

 

 四、小结

如果在同一代码块下,则采用同一块代码块下的缓存机制。

如果是不同代码块,则采用小数据池的驻留机制。

# pycharm 通过运行文件的方式执行下列代码:  这是在同一个文件下也就是同一代码块下,采用同一代码块下的缓存机制。
i1 = 1000
i2 = 1000
print(i1 is i2)  # 结果为True 因为代码块下的缓存机制适用于所有数字
通过交互方式中执行下面代码:   # 这是不同代码块下,则采用小数据池的驻留机制。
>>> i1 = 1000
>>> i2 = 1000
>>> print(i1 is i2)
False  # 不同代码块下的小数据池驻留机制 数字的范围只是-5~256.

更多验证:

# 虽然在同一个文件中,但是函数本身就是代码块,所以这是在两个不同的代码块下,不满足小数据池(驻存机制),则指向两个不同的地址。
def func():
    i1 = 1000
    print(id(i1))  # 2288555806672

def func2():
    i1 = 1000
    print(id(i1))  # 2288557317392

func()
func2()

 

以上是关于Python小数据池,代码块解析的主要内容,如果未能解决你的问题,请参考以下文章

Python 代码块 小数据池

Python 中的驻留机制:小数据池和代码块

python基础之小数据池代码块编码

DAY6 Python之代码块,小数据池的详解

python代码块和小数据池

再谈编码---小数据池(概念)