python,tensorflow,CNN实现mnist数据集的训练与验证正确率
Posted C~K
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python,tensorflow,CNN实现mnist数据集的训练与验证正确率相关的知识,希望对你有一定的参考价值。
1.工程目录
2.导入data和input_data.py
链接:https://pan.baidu.com/s/1EBNyNurBXWeJVyhNeVnmnA
提取码:4nnl
3.CNN.py
import tensorflow as tf import matplotlib.pyplot as plt import input_data mnist = input_data.read_data_sets(\'data/\', one_hot=True) trainimg = mnist.train.images trainlabel = mnist.train.labels testimg = mnist.test.images testlabel = mnist.test.labels print(\'MNIST ready\') n_input = 784 n_output = 10 weights = { \'wc1\': tf.Variable(tf.truncated_normal([3, 3, 1, 64], stddev=0.1)), \'wc2\': tf.Variable(tf.truncated_normal([3, 3, 64, 128], stddev=0.1)), \'wd1\': tf.Variable(tf.truncated_normal([7*7*128, 1024], stddev=0.1)), \'wd2\': tf.Variable(tf.truncated_normal([1024, n_outpot], stddev=0.1)), } biases = { \'bc1\': tf.Variable(tf.random_normal([64], stddev=0.1)), \'bc2\': tf.Variable(tf.random_normal([128], stddev=0.1)), \'bd1\': tf.Variable(tf.random_normal([1024], stddev=0.1)), \'bd2\': tf.Variable(tf.random_normal([n_outpot], stddev=0.1)), } def conv_basic(_input, _w, _b, _keepratio): _input_r = tf.reshape(_input, shape=[-1, 28, 28, 1]) _conv1 = tf.nn.conv2d(_input_r, _w[\'wc1\'], strides=[1, 1, 1, 1], padding=\'SAME\') _conv1 = tf.nn.relu(tf.nn.bias_add(_conv1, _b[\'bc1\'])) _pool1 = tf.nn.max_pool(_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding=\'SAME\') _pool_dr1 = tf.nn.dropout(_pool1, _keepratio) _conv2 = tf.nn.conv2d(_pool_dr1, _w[\'wc2\'], strides=[1, 1, 1, 1], padding=\'SAME\') _conv2 = tf.nn.relu(tf.nn.bias_add(_conv2, _b[\'bc2\'])) _pool2 = tf.nn.max_pool(_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding=\'SAME\') _pool_dr2 = tf.nn.dropout(_pool2, _keepratio) _densel = tf.reshape(_pool_dr2, [-1, _w[\'wd1\'].get_shape().as_list()[0]]) _fc1 = tf.nn.relu(tf.add(tf.matmul(_densel, _w[\'wd1\']), _b[\'bd1\'])) _fc_dr1 = tf.nn.dropout(_fc1, _keepratio) _out = tf.add(tf.matmul(_fc_dr1, _w[\'wd2\']), _b[\'bd2\']) out = { \'input_r\': _input_r, \'conv1\': _conv1, \'pool1\': _pool1, \'pool_dr1\': _pool_dr1, \'conv2\': _conv2, \'pool2\': _pool2, \'pool_dr2\': _pool_dr2, \'densel\': _densel, \'fc1\': _fc1, \'fc_dr1\': _fc_dr1, \'out\': _out } return out print(\'CNN READY\') x = tf.placeholder(tf.float32, [None, n_input]) y = tf.placeholder(tf.float32, [None, n_output]) keepratio = tf.placeholder(tf.float32) _pred = conv_basic(x, weights, biases, keepratio)[\'out\'] cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(_pred, y)) optm = tf.train.AdamOptimizer(learning_rate=0.01).minimize(cost) _corr = tf.equal(tf.argmax(_pred, 1), tf.argmax(y, 1)) accr = tf.reduce_mean(tf.cast(_corr, tf.float32)) init = tf.global_variables_initializer() print(\'GRAPH READY\') sess = tf.Session() sess.run(init) training_epochs = 15 batch_size = 16 display_step = 1 for epoch in range(training_epochs): avg_cost = 0. total_batch = 10 for i in range(total_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) sess.run(optm, feed_dict={x: batch_xs, y: batch_ys, keepratio: 0.7}) avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keepratio: 1.0})/total_batch if epoch % display_step == 0: print(\'Epoch: %03d/%03d cost: %.9f\' % (epoch, training_epochs, avg_cost)) train_acc = sess.run(accr, feed_dict={x: batch_xs, y: batch_ys, keepratio: 1.}) print(\'Training accuracy: %.3f\' % (train_acc)) res_dict = {\'weight\': sess.run(weights), \'biases\': sess.run(biases)} import pickle with open(\'res_dict.pkl\', \'wb\') as f: pickle.dump(res_dict, f, pickle.HIGHEST_PROTOCOL)
4.test.py
import pickle import numpy as np def load_file(path, name): with open(path+\'\'+name+\'.pkl\', \'rb\') as f: return pickle.load(f) res_dict = load_file(\'\', \'res_dict\') print(res_dict[\'weight\'][\'wc1\']) index = 0 import input_data mnist = input_data.read_data_sets(\'data/\', one_hot=True) test_image = mnist.test.images test_label = mnist.test.labels import tensorflow as tf def conv_basic(_input, _w, _b, _keepratio): _input_r = tf.reshape(_input, shape=[-1, 28, 28, 1]) _conv1 = tf.nn.conv2d(_input_r, _w[\'wc1\'], strides=[1, 1, 1, 1], padding=\'SAME\') _conv1 = tf.nn.relu(tf.nn.bias_add(_conv1, _b[\'bc1\'])) _pool1 = tf.nn.max_pool(_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding=\'SAME\') _pool_dr1 = tf.nn.dropout(_pool1, _keepratio) _conv2 = tf.nn.conv2d(_pool_dr1, _w[\'wc2\'], strides=[1, 1, 1, 1], padding=\'SAME\') _conv2 = tf.nn.relu(tf.nn.bias_add(_conv2, _b[\'bc2\'])) _pool2 = tf.nn.max_pool(_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding=\'SAME\') _pool_dr2 = tf.nn.dropout(_pool2, _keepratio) _densel = tf.reshape(_pool_dr2, [-1, _w[\'wd1\'].shape[0]]) _fc1 = tf.nn.relu(tf.add(tf.matmul(_densel, _w[\'wd1\']), _b[\'bd1\'])) _fc_dr1 = tf.nn.dropout(_fc1, _keepratio) _out = tf.add(tf.matmul(_fc_dr1, _w[\'wd2\']), _b[\'bd2\']) out = { \'input_r\': _input_r, \'conv1\': _conv1, \'pool1\': _pool1, \'pool_dr1\': _pool_dr1, \'conv2\': _conv2, \'pool2\': _pool2, \'pool_dr2\': _pool_dr2, \'densel\': _densel, \'fc1\': _fc1, \'fc_dr1\': _fc_dr1, \'out\': _out } return out n_input = 784 n_output = 10 x = tf.placeholder(tf.float32, [None, n_input]) y = tf.placeholder(tf.float32, [None, n_output]) keepratio = tf.placeholder(tf.float32) _pred = conv_basic(x, res_dict[\'weight\'], res_dict[\'biases\'], keepratio)[\'out\'] cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(_pred, y)) _corr = tf.equal(tf.argmax(_pred, 1), tf.argmax(y, 1)) accr = tf.reduce_mean(tf.cast(_corr, tf.float32)) init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) training_epochs = 1 batch_size = 1 display_step = 1 for epoch in range(training_epochs): avg_cost = 0. total_batch = 10 for i in range(total_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) if epoch % display_step == 0: print(\'_pre:\', np.argmax(sess.run(_pred, feed_dict={x: batch_xs, keepratio: 1. }))) print(\'answer:\', np.argmax(batch_ys))
以上是关于python,tensorflow,CNN实现mnist数据集的训练与验证正确率的主要内容,如果未能解决你的问题,请参考以下文章
TensorFlow学习笔记--- 使用CPABD实现最简单的CNN模型
Tensorflow实现CNN简单手写数字识别(Python)