python数据结构之列表字典元组集合
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python数据结构之列表字典元组集合相关的知识,希望对你有一定的参考价值。
列表
列表在python里是有序集合对象类型。
列表里的对象可以是任何对象:数字,字符串,列表或者字典,元组。与字符串不同,列表是可变对象,支持原处修改的操作
python的列表是:
- 任意对象的有序集合
- 通过偏移读取
- 可变长度、异构以及任意嵌套
- 属于可变序列的分组
- 对象引用数组
列表的操作
列表的操作和字符串大部分都相同:
合并/重复:
- list1+list2:结果是两个列表按顺序结合
- list*3:结果是列表list重复三次
- for i in list1: print(i):按顺序打印列表里的内容
- 3 in list:判断列表里有没有一个对象是对象3
- list1.index(1):查找列表里第一个为1的对象的位置
- list1.count(1):查找列表里对象为1的个数
- list1[x:y]:取第x到y的对象,重新建立一个列表
- len(list1):list1里的对象个数
基本列表操作
创建一个列表:
>>> list=[]
>>> list=[1,2,‘3‘,[]]
>>> list
[1, 2, ‘3‘, []]
列表取值:
>>> list[1]
2
>>> list[0:3]
[1, 2, ‘3‘]
重复列表内容:
>>> list*3
[1, 2, ‘3‘, [], 1, 2, ‘3‘, [], 1, 2, ‘3‘, []]
使用in方法来判断对象是否在列表中:
>>> 3 in list
False
>>> [] in list
True
循环打印:
>>> for i in list:
... print (i,end=‘ ‘)
...
1 2 3 []
迭代方式创建列表:
>>> list=[i*4 for i in ‘ASDF‘ ]
>>> list
[‘AAAA‘, ‘SSSS‘, ‘DDDD‘, ‘FFFF‘]
矩阵:
list=[ [1,2,3,],[4,5,6],[7,8,9] ]
>>> list
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
>>> list[0][1]
2
>>> list[1][2]
6
列表原处修改:
>>> food=[‘spam‘,‘eggs‘,‘milk‘]
>>> food[1]
‘eggs‘
>>> food[1]=‘Eggs‘
>>> food[:]
[‘spam‘, ‘Eggs‘, ‘milk‘]
列表的方法
- 列表的添加:
>>>food.append(‘cake‘)
>>> food
[‘spam‘, ‘Eggs‘, ‘milk‘, ‘cake‘]
- 列表的排序:
>>> food.sort()
>>> food
[‘Eggs‘, ‘cake‘, ‘milk‘, ‘spam‘]
- 合并列表:
>>> list1=[1,2,3] >>> list2=[4,5,6] >>> list1.extend(list2) >>> list1 [1, 2, 3, 4, 5, 6]
- 列表的取值:
>>> list1.pop() 6 >>> list1 [1, 2, 3, 4, 5]
- 列表倒序显示:
>>> list1 [1, 2, 3, 4, 5] >>> list1.reverse() >>> list1 [5, 4, 3, 2, 1]
- 列表的索引:
>>> list=[1,2,3,4,5] >>> list.index(3) 2
- 列表的插入:
>>> list.insert(2,10) >>> list [1, 2, 10, 3, 4, 5]
- 删除列表的某一个对象:
>>> list [1, 2, 10, 3, 4, 5] >>> del list[2] >>> list [1, 2, 3, 4, 5]
- 列表的排序:
列表的排序默认是先以字母大小写进行排序的,可以在列表中加一个选项key=lower.str使其都转换成小写,使用reverse=True进行倒序排列
>>> list=[‘abc‘,‘aDd‘,‘ace‘]
>>> sorted(list)
[‘aDd‘, ‘abc‘, ‘ace‘]
>>> list
[‘abc‘, ‘aDd‘, ‘ace‘]
>>> sorted(list,key=str.lower,reverse=True)
[‘aDd‘, ‘ace‘, ‘abc‘]
>>> sorted(list,key=str.lower)
[‘abc‘, ‘ace‘, ‘aDd‘]
>>>sorted([x.lower() for x in list])
[‘abc‘, ‘ace‘, ‘add‘]
>>> sorted([x.lower() for x in list],reverse=True)
[‘add‘, ‘ace‘, ‘abc‘]
列表的实际用法
- 取值:
>>> info=[‘myname‘,18,[1997,9,28]] >>> _name,_age,_birth=info >>> _name ‘myname‘ >>> _age 18 >>> _birth [1997, 9, 28] >>> _name,_age,(_birth_y,_birth_m,_birth_d)=info >>> _birth_y 1997 >>> _birth_m,_birth_d (9, 28)
当取的值不固定的时候,可以用*代替:
>>> a=[‘adc‘,122,2215,‘[email protected]‘] >>> a_name,*a_phone,a_mail=a >>> a_name ‘adc‘ >>> a_phone [122, 2215]
- 只保留列表里最后N个元素:
使用deque函数可以设置列表中的元素个数,如果超过列表最大限制,那么会将列表里最左边的元素删掉,如果是在左边添加的,那么删除的是最右边的元素>>> from collections import deque >>> q=deque(maxlen=3) >>> q.append(1) >>> q.append(2) >>> q.append(3) >>> q deque([1, 2, 3], maxlen=3) >>> q.append(4) >>> q deque([2, 3, 4], maxlen=3) >>> q.appendleft(‘5‘) >>> q deque([‘5‘, 2, 3], maxlen=3)
- 取出列表中的最大值和最小值:
使用heapq模块的nlargest,nsmallest方法来取出列表中的几个最大值和最小值,当然也可以使用max和min函数来求最大和最小,使用sum函数来求列表数字的和>>> from heapq import nlargest,nsmallest >>> num=[1,4,6,7,8,8,34,64,23,7,45,34] >>> nlargest(3,num) [64, 45, 34] >>> nlargest(2,num) [64, 45] >>> nsmallest(2,num) [1, 4] >>> nsmallest(4,num) [1, 4, 6, 7] >>> num [1, 4, 6, 7, 8, 8, 34, 64, 23, 7, 45, 34] >>> max(num) 64 >>> min(num) 1 >>> sum(num) 241 >>> a_info=[‘wanger‘,‘wangerxiao‘,25,‘computer‘] >>> _name=slice(0,2) >>> _age=slice(2,3) >>> _job=slice(3,4) >>> a_info[_name] [‘wanger‘, ‘wangerxiao‘] >>> a_info[_age] [25] >>> a_info[_job] [‘computer‘]
- 重复元素计算:
这会用到collections模块的Counter方法>> a=[1,2,3,4,5,6,2,4,2,5,6] >>> from collections import Counter >>> count_word=Counter(a) >>> count_word Counter({2: 3, 4: 2, 5: 2, 6: 2, 1: 1, 3: 1}) >>> count_word.most_common(3) [(2, 3), (4, 2), (5, 2)] >>> count_word.most_common(2) [(2, 3), (4, 2)]
字典
字典在python里是无序集合对象类型。
字典的值都有独立的唯一的键,用相应的键来取值。
python字典主要特性如下: - 通过键而不是偏移量来读取
- 任意对象的无序组合
- 可变长,异构,任意嵌套
- 属于可映射类型
- 对象引用表
字典用法注意事项:
- 序列运算无效——串联,分片不能使用
- 对新索引(键)赋值会添加项
- 键不一定是字符串——只要是不可变的对象(列表字典除外)
字典的基本操作:
-
字典的赋值:
>>> dict={‘a‘:97,‘b‘:98} >>> len(dict) 2 >>> print("ascii code of ‘a‘ is {},ascii code of ‘b‘ is {}".format(dict[‘a‘],dict[‘b‘])) ascii code of ‘a‘ is 97,ascii code of ‘b‘ is 98
-
判断特定的键是否存在于字典里:
>>> ‘a‘ in dict True >>> ‘b >>>> ‘b‘ is in dict True
- 原处修改:
#更改特定键的值 >>> food={‘eggs‘:3,‘ham‘:1,‘spam‘:4} >>> food[‘ham‘]=2 >>> food {‘eggs‘: 3, ‘ham‘: 2, ‘spam‘: 4} #增加新的键和相应的值 >>> food[‘branch‘]=[‘bacon‘,‘bake‘] >>> food {‘eggs‘: 3, ‘ham‘: 2, ‘spam‘: 4, ‘branch‘: [‘bacon‘, ‘bake‘]} #删除一个字典元素 >>> del food[‘eggs‘] >>> food {‘ham‘: 2, ‘spam‘: 4, ‘branch‘: [‘bacon‘, ‘bake‘]} #清空字典所有条目 >>> dict.clear() #删除字典 del dict
字典的方法
-
查找字典的键值是否存在,如果不存在可以设置返回的值
>>> food.get(‘ham‘) 2 >>> dict.get(‘b‘) 2 >>> dict.get(‘0‘) >>> dict.get(‘0‘,‘none‘) ‘none‘
-
创建字典的方法:
1.最原始的方法:dict={‘name‘:‘wanger‘,‘age‘:25}
2.按键赋值方法:
>>> dict={} >>> dict[‘name‘]=‘wanger‘ >>> dict[‘age‘]=25
-
字典的比较:
字典的比较会比较字典的键,而不是字典的值,可以使用zip方式将字典的值和键反过来,这样就会比较值了,可以使用sorted函数对字典进行排序>>> dict={‘a‘:1,‘b‘:2,‘c‘:3,‘d‘:4} >>> max(dict) ‘d‘ >>> min(dict) ‘a‘ >>> max(zip(dict.values(),dict.keys())) (4, ‘d‘) >>> min(zip(dict.values(),dict.keys())) (1, ‘a‘) >>> sorted(zip(dict.values(),dict.keys())) [(1, ‘a‘), (2, ‘b‘), (3, ‘c‘), (4, ‘d‘)] >>> sorted(zip(dict.values(),dict.keys()),reverse=True) [(4, ‘d‘), (3, ‘c‘), (2, ‘b‘), (1, ‘a‘)]
- 字典列表的排序:
可以使用sorted函数进行排序,使用key参数可以对排序的键进行定义,这里要用到operator模块的itemgetter函数>>> rows [{‘fname‘: ‘Brian‘, ‘lname‘: ‘Jones‘, ‘uid‘: 1003}, {‘fname‘: ‘David‘, ‘lname‘: ‘Beazley‘, ‘uid‘: 1002}, {‘fname‘: ‘John‘, ‘lname‘: ‘Clesse‘, ‘uid‘: 1001}, {‘fname‘: ‘Big‘, ‘lname‘: ‘Jones‘, ‘uid‘: 1004}] >>> from operator import itemgetter >>> rows_fname=sorted(rows,key=itemgetter(‘fname‘)) >>> rows_fname [{‘fname‘: ‘Big‘, ‘lname‘: ‘Jones‘, ‘uid‘: 1004}, {‘fname‘: ‘Brian‘, ‘lname‘: ‘Jones‘, ‘uid‘: 1003}, {‘fname‘: ‘David‘, ‘lname‘: ‘Beazley‘, ‘uid‘: 1002}, {‘fname‘: ‘John‘, ‘lname‘: ‘Clesse‘, ‘uid‘: 1001}] >>> rows_uid=sorted(rows,key=itemgetter(‘uid‘)) >>> rows_uid [{‘fname‘: ‘John‘, ‘lname‘: ‘Clesse‘, ‘uid‘: 1001}, {‘fname‘: ‘David‘, ‘lname‘: ‘Beazley‘, ‘uid‘: 1002}, {‘fname‘: ‘Brian‘, ‘lname‘: ‘Jones‘, ‘uid‘: 1003}, {‘fname‘: ‘Big‘, ‘lname‘: ‘Jones‘, ‘uid‘: 1004}]
元组
元组简介
元组与列表非常类似,只是不能在原处更改,元祖在python里的特点:
- 任意对象的有序组合
- 通过偏移取数据
- 属于不可变序列类型
- 固定长度,异构,任意嵌套
- 对象引用的数组
元组的创建
元祖创建在只有单个元素的时候,必须加逗号(,),元组里可以嵌套元组
>>> tuple=()
>>> tuple=(1,)
>>> type(tuple)
<class ‘tuple‘>
#这里加不加括号都一样
>>> tuple=(1,2,‘3‘,(4,5))
>>> tuple
(1, 2, ‘3‘, (4, 5))
>>> tuple=1,2,‘3‘,(4,5)
>>> tuple
(1, 2, ‘3‘, (4, 5))
将列表转换为元组
>>> list=[1,2,3,4]
>>> sd=tuple(list)
>>> sd
(1, 2, 3, 4)
元组的方法
-
元组的排序:
元组经过sorted排序后,会将其转换为列表>>> tuple=(1,5,3,6,4,2) >>> sorted(tuple) [1, 2, 3, 4, 5, 6]
- 查找元组元素位置:
>>> tuple (1, 5, 3, 6, 4, 2) >>> tuple.index(3) 2
-
计算元组元素数目:
>>> tuple (1, 5, 3, 6, 4, 2) >>> tuple.count(3) 1
-
元组的切片:
>>> tuple[0] 1 >>> tuple[2:] (3, 6, 4, 2) >>> tuple[2:3] (3,)
- 列表和元组的操作类似,列表操作里只要不是在原处修改的,都可用于元组
>>> (1,2)+(3,4) (1, 2, 3, 4) >>> (1,2)*4 (1, 2, 1, 2, 1, 2, 1, 2) >>> len(tuple) 6
集合
集合简介
set是一个无序且不重复的元素集合
集合对象十一组无序排列的可哈希的值,集合成员可以做字典中的键。set也支持用in 和not in操作符检查成员,由于集合本身是无序的,不可以为集合创建索引或执行切片操作,也没有键可用来获取集合中元素的值。
集合特点
- 集合中的元素和字典中的键一样不重复
- 集合中的元素为不可变对象
集合的创建
>>> s=set(‘a‘)
>>> a=set({‘k1‘:1,‘k2‘:2})
>>> b=([‘y‘,‘e‘,‘d‘,‘o‘])
>>> c={‘a‘,‘b‘,‘c‘}
>>> d={(‘a‘,‘b‘,‘c‘)}
集合基本操作
- 集合的比较
#比较a、b集合中a中存在,b中不存在的集合 >>> a={11,22,33} >>> b={11,23,45} >>> a.difference(b) {33, 22} #找到a中存在,b中不存在的集合,并把a、b集合中都有的值覆盖掉 >>> a={11,22,33} >>> print(a.difference_update(b)) None >>> a {33, 22}
-
集合的删除:
>>> a={11,22,33} >>> a.discard(11) >>> a.discard(44) >>> a {33, 22} #移除不存在的元素会报错 >>> a={11,22,33} >>> a.remove(11) >>> a.remove(44) Traceback (most recent call last): File "<stdin>", line 1, in <module> KeyError: 44 >>> a {33, 22} #移除末尾的元素 >>> a={11,22,33} >>> a.pop() 33 >>> a {11, 22}
-
取交集:
#取交集赋给新值 >>> a={1,2,3,4} >>> b={6,5,4,3} >>> print (a.intersection(b)) {3, 4} #取交集并把交集赋给a >>> print (a.intersection_update(b)) None >>> a {3, 4}
- 集合判断:
>>> a={3,4} >>> b={6,5,4,3} #判断a是否与b没有交集,有交集False,无交集True >>> a.isdisjoint(b) False #判断a是否是b的子集 >>> a.issubset(b) True #判断a是否是b的父集 >>> a.issuperset(b) False
- 集合合并:
>>> a={1,2,3,4} >>> b={3, 4, 5, 6} #打印不同的元素 >>> print (a.symmetric_difference(b)) {1, 2, 5, 6} #打印不同的元素,并覆盖到集合a >>> print (a.symmetric_difference_update(b)) None >>> a {1, 2, 5, 6}
- 集合取并集:
>>> a={1, 2, 5, 6} >>> b={3, 4, 5, 6} >>> print (a.union(b)) {1, 2, 3, 4, 5, 6}
-
集合的更新:
>>> a={1, 2, 5, 6} >>> b={3, 4, 5, 6} #把a、b的值合并,并把值赋给集合a >>> a.update(b) >>> a {1, 2, 3, 4, 5, 6} #添加a集合的元素 >>> a.update([7,8]) >>> a {1, 2, 3, 4, 5, 6, 7, 8}
- 集合的转换:
将集合分别转换为列表、元组、字符串>>> a=set(range(5)) } >>> li=list(a) >>> tu=tuple(a) >>> st=str(a) >>> print (li) [0, 1, 2, 3, 4] >>> print (tu) (0, 1, 2, 3, 4) >>> print (st) {0, 1, 2, 3, 4}
python文件
文件简介
文件对象在python里可以作为操作系统上的文件的链接
文件对象的使用方式与之前的字符串、列表等对象不同,它是对文件的输入、输出进行控制
在python里会用open函数来进行文件的控制
文件的访问
在python里使用open函数可以访问文件。
基本格式是:open(<file_address>[,access_mode])
这里的文件地址是文本形式,在Windows里由于文件地址是使用反斜杠(),所以,可以使用r来对反斜杠不进行转义。
例如:
open(r‘C:mydirmyfile‘)
访问模式里是参数,默认是r(读取)
在访问模式,每一种方法都有一种使用到b的方式,就是二进制模式。
文件的读写参数
操作说明符 | 解释 |
---|---|
r | 以只读方式打开文件,这是默认模式 |
rb | 以二进制格式打开一个文件用于只读。这是默认模式 |
r+ | 打开一个文件用于读写 |
rb+ | 以二进制格式打开一个文件用于读写 |
w | 打开一个文件只用于写入。文件存在则覆盖,不存在,则创建新文件 |
wb | 以二进制格式打开一个文件只用于写入。文件存在则覆盖,不存在则创建 |
w+ | 打开一个文件用于读写。如果文件已存在则将其覆盖,不存在则创建新文件。 |
wb+ | 以二进制打开一个文件用于读写。如果该文件存在则覆盖,不存在则创建 |
a | 打开一个文件用于追加,如果文件内容存在,则将新内容追加到文件末尾,不存在则创建新文件写入 |
ab | 以二进制格式打开一个文件用于写入 |
a+ | 打开一个文件用于读写,如果该文件存在,则会将新的内容追加到文件末尾,如果文件不存在,则创建新文件用于读写。 |
ab+ | 以二进制格式打开一个文件用于追加,文件存在将追加,不存在则创建新文件用于读写 |
文件的使用
- 迭代器是最好的读行工具,比如使用for循环
- 内容是字符串,不是对象,文件读取完之后,内容是以字符串的形式读取的。
- close是通常选项,当你使用完文件后,使用close方法来关闭文件关联
- 文件是缓冲而且是可查找的,flush或close()方法可以直接存储缓存里的内容,seek方法可以转到指定位置,当我们使用文件的时候,跟其他对象一样,用一个变量来引用
例子
>>> file1=open(r‘D:
uanjian1.txt‘,‘w‘)
>>> file1.write(‘hello,world‘)
11
>>> file1.close()
>>> file1=open(r‘D:
uanjian1.txt‘)
>>> file1.read()
‘hello,world‘
#tell用于获取文件指针位置,文件读取之后,文件指针在最后面
>>> file1.tell()
11
>>> file1.close()
>>>> file1=open(r‘D:
uanjian1.txt‘)
>>> file1.seek(6)
6
>>> file1.read(5)
‘world‘
文件的读取
当我们要读取前五个字符的时候可以这样:
>>> file1=open(r‘D:
uanjian1.txt‘)
>>> file1.read(5)
‘hello‘
>>> file1.tell()
5
当我们要按行读取的时候,可以使用readline和readlines方法
>>> file1=open(r‘D:
uanjian1.txt‘)
>>> file1.readline()
‘hello,world
‘
>>> file1.readline()
‘wanger
‘
>>> file1.readline()
‘asdfgghh‘
>>> file1.readline()
‘‘
>>> file1=open(r‘D:
uanjian1.txt‘)
>>> file1.readlines()
[‘hello,world
‘, ‘wanger
‘, ‘asdfgghh‘]
文件的写入
当我们需要写入到一个文件的时候,会使用w模式。当相应的文件存在时,会覆盖原先的文件然后写入,当相应的文件不存在时会创建新文件。
-
基本写入
>>> file=open(r‘D: uanjian1.txt‘,‘w‘) >>> file.write(‘hello,world‘) 11 >>> file.write(‘|wanger‘) 7 >>> file.flush() >>> file.close() >>> file=open(r‘D: uanjian1.txt‘) >>> file.read() ‘hello,world|wanger‘
在这里flush()方法是把缓存里的内容写入硬盘中。当运行close()方法的时候,也会进行同样操作。
-
按列表写入:
writelines是把列表里的元素一个一个输入进去。当然,元素里的字符串最后没有换行,最终结果也不是换行的。>>> list=[‘hello,world! ‘,‘wanger ‘,‘asdfgh ‘] >>> file=open(r‘D: uanjian1.txt‘,‘w‘) >>> file.writelines(list) >>> file.close() >>> file=open(r‘D: uanjian1.txt‘) >>> file.read() ‘hello,world! wanger asdfgh ‘
-
在特定位置写入
当我们输入错误的时候,可以把指针挪到最前面,然后继续输入。seek可以有两个传递变量,只有一个变量或者第一个变量为0时,就是更改当前的指针,第二个变量为1的时候,会返回当前指针位置,这个与tell方法同样,最后,第一个变量为0,第二个变量为2的时候会把指针放到最后>>> file=open(r‘D: uanjian1.txt‘,‘w‘) >>> file.write(‘heelo‘) 5 >>> file.seek(0) 0 >>> file.write(‘hello‘) 5 >>> file=open(r‘D: uanjian1.txt‘) >>> file.read() ‘hello‘
-
在最后写入
之前看到的w模式,当文件是已有文件,就会删除里面的所有内容后再写入的。当我们需要在最后添加,而不是删除原有内容时,可以使用a模式。>>> file=open(r‘D: uanjian1.txt‘) >>> file.read() ‘hello‘ >>> file.close() >>> file=open(r‘D: uanjian1.txt‘,‘a‘) >>> file.write(‘my name is wanger‘) 17 >>> file=open(r‘D: uanjian1.txt‘) >>> file.read() ‘hellomy name is wanger‘
在模式里,我们会看到r+,w+,a+三种模式都有读写的方法。
r+模式,只能打开已有文件,打开时保留原有文件,对文件可读,可写,也可更改原有内容。打开是指针在文件最前面。
w+模式,打开时没有相应的文件,会创建;有相应的文件会覆盖原有的内容
a+模式,可以打开原有文件,也可创建新的文件,打开时指针为文件的最后位置。指针可以放到任何位置来读内容,但写入时,指针默认会移动到最后,然后写入。
模式 | 打开已有文件 | 打开新的文件 | 打开时指针位置 | 写入时指针位置 |
---|---|---|---|---|
r+ | 保留内容 | 发生错误 | 文件开头 | 当前位置 |
w+ | 删除内容 | 创建文件 | 文件开头 | 当前位置 |
a+ | 保留内容 | 创建文件 | 文件尾端 | 文件尾端 |
文件的访问
- 二进制模式
在这个模式中,在python2.x中不会有什么特别,因为在2.x里存储方式就是二进制方式,但在python3.x里是Unicode方式。>>> cha=‘啊‘ >>> cha_b=cha.encode() >>> file=open(r‘D: uanjian1.txt‘,‘w‘) >>> file.write(cha) 1 >>> file.write(cha_b) Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: write() argument must be str, not bytes >>> file.close() >>> file=open(r‘D: uanjian1.txt‘) >>> file.read() ‘啊‘ >>> file=open(r‘D: uanjian1.txt‘,‘wb‘) >>> file.write(cha) Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: a bytes-like object is required, not ‘str‘ >>> file.write(cha_b) 3 >>> file.close() >>> file=open(r‘D: uanjian1.txt‘,‘rb‘) >>> file.read() b‘xe5x95x8a‘
文件与其他类型
- 原生对象的存取
存储一些对象的时候,比如说列表,字典等;python都需要把这些对象转换成字符串后存储:>>> file=open(r‘D: uanjian1.txt‘,‘w‘) >>> file.write({‘a‘:97}) Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: write() argument must be str, not dict >>> file.write(str({‘a‘:97})) 9 >>> file.write(str([1,2])) 6 >>> file.close() >>> file=open(r‘D: uanjian1.txt‘) >>> file.read() "{‘a‘: 97}[1, 2]"
如果要将存储的字符串转换回原来的数据类型,可以用pickle模块:
>>> file=open(r‘D:
uanjian1.txt‘,‘wb‘)
>>> a={‘a‘:97}
>>> pickle.dump(a,file)
>>> file.close()
>>> file=open(r‘D:
uanjian1.txt‘,‘rb‘)
>>> a_=pickle.load(file)
>>> a_
{‘a‘: 97}
打印输出至文件
需要把打印的内容直接输出到文件里的时候:
>>> with open (r‘D:
uanjian1.txt‘,‘w‘) as f:
... print (‘hello,world!‘,file=f)
...
>>> with open (r‘D:
uanjian1.txt‘) as f:
... f.read()
...
‘hello,world!
‘
判断文件是否存在,不存在时写入
因为w方式对已存在的文件会清楚后写入,但有的时候我们不想覆盖原有的文件,我们可以使用如下方式:
>>> if not os.path.exists(r‘D:
uanjian1.txt‘):
... with open(r‘D:
uanjian1.txt‘,‘wt‘) as f:
... f.write(‘hello,world‘)
... else:
... print (‘file already exists‘)
...
file already exists
在python3.x中我们也可以使用这种方式来判断文件是否存在,存在的话会报错,不存在的话文件可以创建
>>> with open(r‘D:ruanjian2.txt‘,‘xt‘) as f:
... f.write(‘hello
‘)
...
6
>>> with open(r‘D:ruanjian2.txt‘,‘xt‘) as f:
... f.write(‘hello
‘)
...
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
FileExistsError: [Errno 17] File exists: ‘D:ruanjian\2.txt‘
读写压缩文件
文件在存储时也可以压缩存储,需要用到gzip或者bz2模块,在这两个模块中,默认是二进制模式,因此需要使用wt,rt等,指定text模式。读的时候使用rt,和read()。
压缩级别可以用compresslevel来设置,也可以使用open里的encoding,errors,newline等。
>>> with gzip.open(r‘D:
uanjian1.gz‘,‘wt‘) as f:
... f.write(‘text‘)
...
4
>>> with gzip.open(r‘D:
uanjian1.gz‘,‘rt‘) as f:
... f.read()
...
‘text‘
>>> with bz2.open(r‘D:
uanjian1.bz2‘,‘wt‘) as f:
... f.write(‘hello,world‘)
...
11
>>> with bz2.open(r‘D:
uanjian1.bz2‘,‘rt‘) as f:
... f.read()
...
‘hello,world‘
获取文件夹中的文件列表
这要用到os模块里的方法,关于os模块可以查看公众号的历史消息,对os模块有详细的解释,这里只列出一些简单的方法:
>>> import os
>>> os.getcwd()
‘/root/blog‘
>>> os.listdir(‘.‘)
[‘_config.yml‘, ‘node_modules‘, ‘.gitignore‘, ‘source‘, ‘db.json‘, ‘themes‘, ‘package.json‘, ‘public‘, ‘scaffolds‘, ‘.deploy_git‘]
#当需要判断是文件时
>>> files=[file for file in os.listdir(‘.‘) if os.path.isfile(os.path.join(‘.‘,file))]
>>> files
[‘_config.yml‘, ‘.gitignore‘, ‘db.json‘, ‘package.json‘]
欢迎各位关注我的微信公众号
以上是关于python数据结构之列表字典元组集合的主要内容,如果未能解决你的问题,请参考以下文章
Python基础数据结构:列表 | 元组 | 集合 | 字典