我所知道的Handler
Posted 真菜啊
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了我所知道的Handler相关的知识,希望对你有一定的参考价值。
简单讲,handler就是两个功能
插入消息,enqueuemessage,msg,when
从消息队列中遍历所有消息,比对msg.when和当前的when,找到合适的位置插入
处理消息,looper.loop会从messagequeue中调用next。取消息,如果消息还没到时间该执行,就会比对时间,下次轮询就通过binder写入,native函数休眠,到时间唤醒执行。
handler内存泄漏
GCRoot 一般是静态变量或者常量可以作为GCROOT
GCROOT 是ThreadLocal,存在于Looper中,Looper被加载就存在,
handler持有activity或者fragment,handler又被message持有,message的target属性,message被messagequeue持有,messagequeue被looper中的threadlocal持有
java中匿名内部类会默认持有外部类的引用
打断持有链
- handler.removemesage handler.removecallbacks
- handler使用static修饰。
主线程的Looper不允许退出
处理消息,looper取出来后,调用message.tager.dispatchemesage后面调用了handler的handlemessage方法。
还有个callback对象,如果有callback,dispatch会先执行callback的处理,calllback返回true,后面就不处理了,callback返回false就给handler的handlemessage处理了
Meesage对象创建
message创建用的obtain,池化,频繁的创建销毁会导致内存不稳定,抖动,造成卡顿 oom等问题
message pool的最大缓存50
阻塞和休眠,阻塞是被动的,休眠是主动的,阻塞不会让出cpu,休眠会,thread.yield会让出cpu。
子线程主线程通信
handler,livedata,eventbus,flow,rxjava,broadcast,观察者模式不能跨线程
最终都是handler完成的。
Handler监听卡顿
原理是在looper内完成的,looper处理消息的时候,会打印内容,就是Printer,looper可以设置它。
Message消息的分类
同步消息,普通的消息都是同步消息
异步消息,创建handler的时候设置async为true即可
同步屏障,需要通过反射调用,app层无法直接调用,是messagequeue提供的posSyncBarrier方法实现的,返回一个token,时msg的arg1值,用它来取消同步屏障。和普通消息的区别是,msg。target属性为null。
刷新UI的消息是异步消息,发送前先插入了一个同步屏障消息,异步消息处理完成后,要将同步屏障消息移除队列
消息入队
handler消息加入队列,有一系列方法,如下:
// 发送空消息
public final boolean sendEmptyMessage(int what)
public final boolean sendEmptyMessageDelayed(int what,long delay)
public final boolean sendEmptyMessageAtTime(int what,long when)
// 发送消息
public final boolean sendMessage(@NonNull Message msg)
public final boolean sendMessageDelayed(@NonNull Message msg,long time)
public final boolean sendMessageAtTime(@NonNull Message msg,long when)
public final boolean sendMessageAtFrontOfQueue(Message msg)
// post发送
public final boolean post(@NonNull Runnable r)
public final boolean postAtTime(@NonNull Runnable r, long uptimeMillis)
public final boolean postAtTime(
@NonNull Runnable r, @Nullable Object token, long uptimeMillis)
public final boolean postDelayed(@NonNull Runnable r, long delayMillis)
public final boolean postDelayed(Runnable r, int what, long delayMillis)
public final boolean postDelayed(
@NonNull Runnable r, @Nullable Object token, long delayMillis)
public final boolean postAtFrontOfQueue(@NonNull Runnable r)
// enqueue
public final boolean executeOrSendMessage(@NonNull Message msg)
private boolean enqueueMessage(@NonNull MessageQueue queue, @NonNull Message msg,
long uptimeMillis)
最终都是掉用的enqueueMessage加入队列
private boolean enqueueMessage(@NonNull MessageQueue queue, @NonNull Message msg,
long uptimeMillis)
msg.target = this; // 绑定消息处理对象
msg.workSourceUid = ThreadLocalWorkSource.getUid();
if (mAsynchronous) // 根据handler创建是否是异步的,来将消息标记为异步消息
msg.setAsynchronous(true);
// 调用messagequeue的方法,加入队列。
return queue.enqueueMessage(msg, uptimeMillis);
下面看下消息如何入队的
boolean enqueueMessage(Message msg, long when)
if (msg.target == null)
throw new IllegalArgumentException("Message must have a target.");
synchronized (this)
if (msg.isInUse())
throw new IllegalStateException(msg + " This message is already in use.");
if (mQuitting)
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
msg.markInUse();
msg.when = when;
// 当前队列的头
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when)
// New head, wake up the event queue if blocked.
// 消息队列为null,或者消息是立刻执行的,或者要执行的时间先于头消息的时间,将当前消息作为新的队列的头
msg.next = p;
mMessages = msg;
needWake = mBlocked;
else
// Inserted within the middle of the queue. Usually we don\'t have to wake
// up the event queue unless there is a barrier at the head of the queue // and the message is the earliest asynchronous message in the queue. needWake = mBlocked && p.target == null && msg.isAsynchronous();
// 遍历队列,找到合适的位置,将当前消息插入进去
Message prev;
for (;;)
prev = p;
p = p.next;
if (p == null || when < p.when)
break;
if (needWake && p.isAsynchronous())
needWake = false;
msg.next = p; // invariant: p == prev.next
prev.next = msg;
// 如果需要的话,唤醒队列,开始处理消息,就是MessageQueue的next方法开始执行
// We can assume mPtr != 0 because mQuitting is false.
if (needWake)
nativeWake(mPtr);
return true;
取消息以及消息处理
取消息1
取消息入口是Looper的loop方法处理的
public static void loop()
final Looper me = myLooper();
if (me == null)
throw new RuntimeException("No Looper; Looper.prepare() wasn\'t called on this thread.");
if (me.mInLoop)
Slog.w(TAG, "Loop again would have the queued messages be executed"
+ " before this one completed.");
me.mInLoop = true;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is. Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
// Allow overriding a threshold with a system prop. e.g.
// adb shell \'setprop log.looper.1000.main.slow 1 && stop && start\' final int thresholdOverride =
SystemProperties.getInt("log.looper."
+ Process.myUid() + "."
+ Thread.currentThread().getName()
+ ".slow", 0);
me.mSlowDeliveryDetected = false;
// 无限循环,通过loopOnce取消息
for (;;)
if (!loopOnce(me, ident, thresholdOverride))
return;
处理消息
private static boolean loopOnce(final Looper me,
final long ident, final int thresholdOverride)
// 取消息
Message msg = me.mQueue.next(); // might block
if (msg == null)
// No message indicates that the message queue is quitting.
return false;
// This must be in a local variable, in case a UI event sets the logger
final Printer logging = me.mLogging;
if (logging != null)
logging.println(">>>>> Dispatching to " + msg.target + " "
+ msg.callback + ": " + msg.what);
// Make sure the observer won\'t change while processing a transaction.
final Observer observer = sObserver;
final long traceTag = me.mTraceTag;
long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
long slowDeliveryThresholdMs = me.mSlowDeliveryThresholdMs;
if (thresholdOverride > 0)
slowDispatchThresholdMs = thresholdOverride;
slowDeliveryThresholdMs = thresholdOverride;
final boolean logSlowDelivery = (slowDeliveryThresholdMs > 0) && (msg.when > 0);
final boolean logSlowDispatch = (slowDispatchThresholdMs > 0);
final boolean needStartTime = logSlowDelivery || logSlowDispatch;
final boolean needEndTime = logSlowDispatch;
if (traceTag != 0 && Trace.isTagEnabled(traceTag))
Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0;
final long dispatchEnd;
Object token = null;
if (observer != null)
token = observer.messageDispatchStarting();
long origWorkSource = ThreadLocalWorkSource.setUid(msg.workSourceUid);
try
// 这里取出msg的target属性,就是handler对象,进行消息的处理。注意:屏障消息是没有target的。
msg.target.dispatchMessage(msg);
if (observer != null)
observer.messageDispatched(token, msg);
dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
catch (Exception exception)
if (observer != null)
observer.dispatchingThrewException(token, msg, exception);
throw exception;
finally
ThreadLocalWorkSource.restore(origWorkSource);
if (traceTag != 0)
Trace.traceEnd(traceTag);
if (logSlowDelivery)
if (me.mSlowDeliveryDetected)
if ((dispatchStart - msg.when) <= 10)
Slog.w(TAG, "Drained");
me.mSlowDeliveryDetected = false;
else
if (showSlowLog(slowDeliveryThresholdMs, msg.when, dispatchStart, "delivery",
msg))
// Once we write a slow delivery log, suppress until the queue drains.
me.mSlowDeliveryDetected = true;
// 这里会打印那些执行慢的消息
if (logSlowDispatch)
showSlowLog(slowDispatchThresholdMs, dispatchStart, dispatchEnd, "dispatch", msg);
if (logging != null)
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
// Make sure that during the course of dispatching the
// identity of the thread wasn\'t corrupted. final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent)
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
msg.recycleUnchecked();
return true;
取消息2
再看下实际的取消息的方法,MessageQueue的next方法
Message next()
// Return here if the message loop has already quit and been disposed.
// This can happen if the application tries to restart a looper after quit // which is not supported.
final long ptr = mPtr;
if (ptr == 0)
return null;
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;)
if (nextPollTimeoutMillis != 0)
Binder.flushPendingCommands();
// 这个方法会在没有消息的时候阻塞
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this)
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
// 消息头保存
Message msg = mMessages;
if (msg != null && msg.target == null)
// Stalled by a barrier. Find the next asynchronous message in the queue.
// 这里处理同步屏障消息,如果当前消息是异步消息,就跳出循环,否则继续循环
do
prevMsg = msg;
msg = msg.next;
while (msg != null && !msg.isAsynchronous());
// 循环的作用,找出队列里的异步消息,存储在msg里,或者将同步屏障消息存储在msg中,prevMsg存储的是同步消息
if (msg != null)
if (now < msg.when)
// 下次的唤醒时间
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
else
// Got a message.
mBlocked = false;
if (prevMsg != null)
prevMsg.next = msg.next;
else
mMessages = msg.next;
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
// 将取出的消息交给handler处理。
return msg;
else
// No more messages.
nextPollTimeoutMillis = -1;
// Process the quit message now that all pending messages have been handled.
if (mQuitting)
dispose();
return null;
// If first time idle, then get the number of idlers to run.
// Idle handles only run if the queue is empty or if the first message // in the queue (possibly a barrier) is due to be handled in the future.
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when))
pendingIdleHandlerCount = mIdleHandlers.size();
if (pendingIdleHandlerCount <= 0)
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
if (mPendingIdleHandlers == null)
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
// Run the idle handlers.
// We only ever reach this code block during the first iteration.
for (int i = 0; i < pendingIdleHandlerCount; i++)
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler
boolean keep = false;
try
keep = idler.queueIdle();
catch (Throwable t)
Log.wtf(TAG, "IdleHandler threw exception", t);
if (!keep)
synchronized (this)
mIdleHandlers.remove(idler);
// Reset the idle handler count to 0 so we do not run them again.
pendingIdleHandlerCount = 0;
// While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
nextPollTimeoutMillis = 0;
handler的消息处理
是从dispatchMessage方法开始的,里面进行消息处理
public void dispatchMessage(@NonNull Message msg)
// 检查message是否设置了callback对象(runnable类型的)
if (msg.callback != null)
// 执行其run方法
handleCallback(msg);
else
// 检查handler是否设置了callback对象
if (mCallback != null)
if (mCallback.handleMessage(msg))
// 如果返回true,后续就不执行了。
return;
// 自定义handler的时候,实现该方法处理消息
handleMessage(msg);
IdleHandler是什么?干什么?继续看MessageQueue类。
IdleHandler是MessageQueue的静态内部接口。如下
public static interface IdleHandler
/**
* Called when the message queue has run out of messages and will now * wait for more. Return true to keep your idle handler active, false * to have it removed. This may be called if there are still messages * pending in the queue, but they are all scheduled to be dispatched * after the current time. */
boolean queueIdle();
当前线程的消息对立内当前没有消息要处理时,会取出idlehander执行任务,因为执行在主线程,禁止执行耗时操作。返回true表示执行完并不会移除该对象,false执行完一次就移除。
而且,执行时机是不确定的。
执行的地方在next方法内部。
Message next()
// Return here if the message loop has already quit and been disposed.
// This can happen if the application tries to restart a looper after quit // which is not supported.
final long ptr = mPtr;
if (ptr == 0)
return null;
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;)
if (nextPollTimeoutMillis != 0)
Binder.flushPendingCommands();
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this)
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null)
// Stalled by a barrier. Find the next asynchronous message in the queue.
do
prevMsg = msg;
msg = msg.next;
while (msg != null && !msg.isAsynchronous());
if (msg != null)
if (now < msg.when)
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
else
// Got a message.
mBlocked = false;
if (prevMsg != null)
prevMsg.next = msg.next;
else
mMessages = msg.next;
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
else
// No more messages.
nextPollTimeoutMillis = -1;
// Process the quit message now that all pending messages have been handled.
if (mQuitting)
dispose();
return null;
// 执行到这里,说明没有找到message对象需要执行了,且线程没有退出。
// If first time idle, then get the number of idlers to run.
// Idle handles only run if the queue is empty or if the first message // in the queue (possibly a barrier) is due to be handled in the future.
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when))
pendingIdleHandlerCount = mIdleHandlers.size();
if (pendingIdleHandlerCount <= 0)
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
// 取出idlehandlers
if (mPendingIdleHandlers == null)
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
// Run the idle handlers.
// We only ever reach this code block during the first iteration.
for (int i = 0; i < pendingIdleHandlerCount; i++)
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler
boolean keep = false;
try
// 执行idlehandler的方法
keep = idler.queueIdle();
catch (Throwable t)
Log.wtf(TAG, "IdleHandler threw exception", t);
if (!keep)
// 需要移除的话,在此处进行移除
synchronized (this)
mIdleHandlers.remove(idler);
// Reset the idle handler count to 0 so we do not run them again.
pendingIdleHandlerCount = 0;
// While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
nextPollTimeoutMillis = 0;
Android消息机--handler的自我总结
大家都知道Handler是Android为了能在子线程更新UI所创作出来的一个类.
那么为什么Handler能在handler里面能更新UI。是因为Handler 把更新UI的操作切换到了主线程来操作.
有些博客说Handler是线程之间的一种通讯方式,这只局限于子线程跟主线程之间,
那么子线程是怎么把消息传送到主线程来操作,这其中一个关键的地方就是Looper.
从例子我们可以知道 假如现在有一段主要的代码
oncrete(){
new Thread(new Runnable(){
run{
//进行UI操作 ---这样是会报错的 那么我们加上handler
// 之前是没有的,现在加上Looper
Looper.prepare();
new Handler(){
handlerMessage(){
//进行UI操作 ---
// 如果是这样依然会报错 因为子线程中现在还没有Looper,会报没有Looper那个错误信息(从源码可以看到加了Looper检测) 那么我们加上Looper
}
}
Looper.loop();
}
}).start;
}
从上面的代码中 加了Looper之后还是会报错,报应该在主线程中执行UI操作.
那么是为什么,原因在于 这个Looper不是主线程的Looper
一个解决方法是 把Looper.prepare();改成Looper.getMainLooper();
或者 new Handler(Looper.getMainLooper);
这样就可以更新UI不会报错了,
那么Looper是怎样把更新UI的操作切换到主线程
我们从源码可以看到 当我们new Handler(Looper.getMainLooper())的时候 里面有
Handler(Looper looperCallback callbackasync) { = looper= looper.mQueue= callback= async}
所以说这个时候 handler已经拿到了主线程的Looper;
然后我们在Looper的loop();方法里面看到
{ msg.target.dispatchMessage(msg)} { (traceTag != ) { Trace.(traceTag)} }
会调用msg.target 这个msg.target是在这里拿到
Looper me = ()(me == ) { RuntimeException()} MessageQueue queue = me.mQueue
() { Message msg = queue.next()(msg == ) { }
在loop()方法里面Looper会开始无限循环 去处理信息啦。
顺序是以下这样
1:实例化Activity 的时候创建ActivityThread(主线程) 然后在Main()里面创建Looper 然后Looper里面通过mThreadLocal 的set方法保存主线程
然后再调用Looper.loop();这时候会开启无限循环
2:Looper.getMainLooper 会调用get方法 这个时候就拿到了主线程的Looper 以及里面保存的messageQueue
然后 handler调用post 其实也就是在主线程的messageQueue上插入一个信息
那么loop 方法里面就检测到了,这时候已经是切换到主进程了.
看源码比较能清晰整个流程
以上是关于我所知道的Handler的主要内容,如果未能解决你的问题,请参考以下文章
默认线程,如 DestroyJavaVM、Reference Handler、Signal Dispatcher