Python3-生成器&迭代器
Posted 追梦的肥猪
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python3-生成器&迭代器相关的知识,希望对你有一定的参考价值。
列表生成式
列表[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],要求把列表里的每个值加1,如何实现?
>>> a = [i+1 for i in range(10)] >>> a [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
这就叫列表生成。
生成器
通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万元素的列表,不仅占用很大的储存空间,如果我们仅仅需要访问前面几个元素,那后面绝大所述元素占用的空间都白白浪费了。
所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。
要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[ ]改成( ),就创建了一个genreator:
>>> L = [x * x for x in range(10)] >>> L [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] >>> g = (x * x for x in range(10)) >>> g <generator object <genexpr> at 0x1022ef630>
创建L和g的区别仅在于最外层的[]和(),L是一个list,而g是一个generator。
我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?
如果要一个个打印出来,可以通过next()函数获得generator的下一个返回值:
>>> next(g) 0 >>> next(g) 1 >>> next(g) 4 >>> next(g) 9 >>> next(g) 16 >>> next(g) 25 >>> next(g) 36 >>> next(g) 49 >>> next(g) 64 >>> next(g) 81 >>> next(g) Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration
我们讲过,generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。
上面不断调用next(g)太麻烦,正确的方式是使用for循环,因为generator也是可迭代对象:
>>> g = (x * x for x in range(10)) >>> for n in g: ... print(n) ... 0 1 4 9 16 25 36 49 64 81
generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for
循环无法实现的时候,还可以用函数来实现。
比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:
1, 1, 2, 3, 5, 8, 13, 21, 34, ...
斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:
def fib(max): n, a, b = 0, 0, 1 while n < max: print(b) a, b = b, a + b n = n + 1 return \'done\'
a, b = b, a + b #相当于 t = (b, a + b) # t是一个tuple a = t[0] b = t[1]
上面的函数可以输出斐波那契数列的前N个数:
>>> fib(10) 1 1 2 3 5 8 13 21 34 55 done
上面的函数和generator仅一步之遥。要把fib
函数变成generator,只需要把print(b)
改为yield b
就可以了:
def fib(max): n,a,b = 0,0,1 while n < max: #print(b) yield b a,b = b,a+b n += 1 return \'done\'
这就是定义generator的另一种方法。如果一个函数定义中包含yield
关键字,那么这个函数就不再是一个普通函数,而是一个generator:
>>> f = fib(6) >>> f <generator object fib at 0x104feaaa0>
generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。
data = fib(10) print(data) print(data.__next__()) print(data.__next__()) print("干点别的事") print(data.__next__()) print(data.__next__()) print(data.__next__()) print(data.__next__()) print(data.__next__()) #输出 <generator object fib at 0x101be02b0> 1 1 干点别的事 2 3 5 8 13
更多应用
import time def tail(filename): f = open(filename) f.seek(0, 2) # 2--> 从文件末尾算起 while True: line = f.readline() #读取文件中新的文本行 if not line: time.sleep(0.1) continue yield line tail_g = tail(\'test1\') for line in tail_g: print(line)
send
def generator(): print(123) content = yield 1 print(\'======\', content) print(456) yield 2 g = generator() ret = g.__next__() # 跟 ret = g.send(None) 一样效果 print(\'***\', ret) ret = g.send(\'hello\') # send的效果和next一样 print(ret) # next的时候,把yield 的值返回到外面 # send的时候,把send 的值返回到里面!
def averager(): total = 0.0 count = 0 average = None while True: num = yield average count += 1 total += num average = total / count g_avg = averager() g_avg.send(None) print(g_avg.send(10)) print(g_avg.send(30)) print(g_avg.send(5))
def init(func): #在调用被装饰生成函数的时候先用next激活生成器 def inner(): g = func() next(g) return g return inner @init def averager(): total = 0.0 count = 0 average = None while True: num = yield average count += 1 total += num average = total / count g_avg = averager() # g_avg.send(None) print(g_avg.send(10)) print(g_avg.send(30)) print(g_avg.send(5))
yield from
yield from iterable 本质上等于 for item in iterable: yield item的缩写版
def gen1(): for c in \'AB\': yield c for i in range(3): yield i print(list(gen1())) def gen2(): yield from \'AB\' yield from range(3) print(list(gen2()))
均输出:
[\'A\', \'B\', 0, 1, 2]
迭代器
python中的for循环
要了解for循环是怎么回事儿,咱们还是要从代码的角度出发。
首先,我们对一个列表进行for循环。
for i in [1,2,3,4]: print(i)
上面这段代码肯定是没有问题的,但是我们换一种情况,来循环一个数字1234试试
for i in 1234 print(i) 结果: Traceback (most recent call last): File "test.py", line 4, in <module> for i in 1234: TypeError: \'int\' object is not iterable
看,报错了!报了什么错呢?“TypeError: \'int\' object is not iterable”,说int类型不是一个iterable,那这个iterable是个啥?
迭代和可迭代协议
什么叫迭代
现在,我们已经获得了一个新线索,有一个叫做“可迭代的”概念。
首先,我们从报错来分析,好像之所以1234不可以for循环,是因为它不可迭代。那么如果“可迭代”,就应该可以被for循环了。
这个我们知道呀,字符串、列表、元组、字典、集合都可以被for循环,说明他们都是可迭代的。
from collections import Iterable l = [1,2,3,4] t = (1,2,3,4) d = {1:2,3:4} s = {1,2,3,4} print(isinstance(l,Iterable)) print(isinstance(t,Iterable)) print(isinstance(d,Iterable)) print(isinstance(s,Iterable))
#from collections import Iterator
#l = [1,2,3,4]
#print(isinstance(l,Iterator))
结合我们使用for循环取值的现象,再从字面上理解一下,其实迭代就是我们刚刚说的,可以将某个数据集内的数据“一个挨着一个的取出来”,就叫做迭代。
可迭代协议
我们现在是从结果分析原因,能被for循环的就是“可迭代的”,但是如果正着想,for怎么知道谁是可迭代的呢?
假如我们自己写了一个数据类型,希望这个数据类型里的东西也可以使用for被一个一个的取出来,那我们就必须满足for的要求。这个要求就叫做“协议”。
print(dir([1,2])) print(dir((2,3))) print(dir({1:2})) print(dir({1,2}))
[\'__add__\', \'__class__\', \'__contains__\', \'__delattr__\', \'__delitem__\', \'__dir__\', \'__doc__\', \'__eq__\', \'__format__\', \'__ge__\', \'__getattribute__\', \'__getitem__\', \'__gt__\', \'__hash__\', \'__iadd__\', \'__imul__\', \'__init__\', \'__iter__\', \'__le__\', \'__len__\', \'__lt__\', \'__mul__\', \'__ne__\', \'__new__\', \'__reduce__\', \'__reduce_ex__\', \'__repr__\', \'__reversed__\', \'__rmul__\', \'__setattr__\', \'__setitem__\', \'__sizeof__\', \'__str__\', \'__subclasshook__\', \'append\', \'clear\', \'copy\', \'count\', \'extend\', \'index\', \'insert\', \'pop\', \'remove\', \'reverse\', \'sort\'] [\'__add__\', \'__class__\', \'__contains__\', \'__delattr__\', \'__dir__\', \'__doc__\', \'__eq__\', \'__format__\', \'__ge__\', \'__getattribute__\', \'__getitem__\', \'__getnewargs__\', \'__gt__\', \'__hash__\', \'__init__\', \'__iter__\', \'__le__\', \'__len__\', \'__lt__\', \'__mul__\', \'__ne__\', \'__new__\', \'__reduce__\', \'__reduce_ex__\', \'__repr__\', \'__rmul__\', \'__setattr__\', \'__sizeof__\', \'__str__\', \'__subclasshook__\', \'count\', \'index\'] [\'__class__\', \'__contains__\', \'__delattr__\', \'__delitem__\', \'__dir__\', \'__doc__\', \'__eq__\', \'__format__\', \'__ge__\', \'__getattribute__\', \'__getitem__\', \'__gt__\', \'__hash__\', \'__init__\', \'__iter__\', \'__le__\', \'__len__\', \'__lt__\', \'__ne__\', \'__new__\', \'__reduce__\', \'__reduce_ex__\', \'__repr__\', \'__setattr__\', \'__setitem__\', \'__sizeof__\', \'__str__\', \'__subclasshook__\', \'clear\', \'copy\', \'fromkeys\', \'get\', \'items\', \'keys\', \'pop\', \'popitem\', \'setdefault\', \'update\', \'values\'] [\'__and__\', \'__class__\', \'__contains__\', \'__delattr__\', \'__dir__\', \'__doc__\', \'__eq__\', \'__format__\', \'__ge__\', \'__getattribute__\', \'__gt__\', \'__hash__\', \'__iand__\', \'__init__\', \'__ior__\', \'__isub__\', \'__iter__\', \'__ixor__\', \'__le__\', \'__len__\', \'__lt__\', \'__ne__\', \'__new__\', \'__or__\', \'__rand__\', \'__reduce__\', \'__reduce_ex__\', \'__repr__\', \'__ror__\', \'__rsub__\', \'__rxor__\', \'__setattr__\', \'__sizeof__\', \'__str__\', \'__sub__\', \'__subclasshook__\', \'__xor__\', \'add\', \'clear\', \'copy\', \'difference\', \'difference_update\', \'discard\', \'intersection\', \'intersection_update\', \'isdisjoint\', \'issubset\', \'issuperset\', \'pop\', \'remove\', \'symmetric_difference\', \'symmetric_difference_update\', \'union\', \'update\']
总结一下我们现在所知道的:可以被for循环的都是可迭代的,要想可迭代,内部必须有一个__iter__方法。
接着分析,__iter__方法做了什么事情呢?
print([1,2].__iter__()) 结果 <list_iterator object at 0x1024784a8>
执行了list([1,2])的__iter__方法,我们好像得到了一个list_iterator,现在我们又得到了一个新名词——iterator。
iterator,这里给我们标出来了,是一个计算机中的专属名词,叫做迭代器。
迭代器
什么叫“可迭代”之后,又一个历史新难题,什么叫“迭代器”?
虽然我们不知道什么叫迭代器,但是我们现在已经有一个迭代器了,这个迭代器是一个列表的迭代器。
我们来看看这个列表的迭代器比起列表来说实现了哪些新方法,这样就能揭开迭代器的神秘面纱了吧?
\'\'\' dir([1,2].__iter__())是列表迭代器中实现的所有方法,dir([1,2])是列表中实现的所有方法,都是以列表的形式返回给我们的,为了看的更清楚,我们分别把他们转换成集合, 然后取差集。 \'\'\' #print(dir([1,2].__iter__())) #print(dir([1,2])) print(set(dir([1,2].__iter__()))-set(dir([1,2]))) 结果: {\'__length_hint__\', \'__next__\', \'__setstate__\'}
我们看到在列表迭代器中多了三个方法,那么这三个方法都分别做了什么事呢?
iter_l = [1,2,3,4,5,6].__iter__() #获取迭代器中元素的长度 print(iter_l.__length_hint__())
#根据索引值指定从哪里开始迭代 print(\'*\',iter_l.__setstate__(4))
#一个一个的取值 print(\'**\',iter_l.__next__()) print(\'***\',iter_l.__next__())
这三个方法中,能让我们一个一个取值的神奇方法是谁?
没错!就是__next__
在for循环中,就是在内部调用了__next__方法才能取到一个一个的值。
那接下来我们就用迭代器的next方法来写一个不依赖for的遍历。
l = [1,2,3,4]
l_iter = l.__iter__()
item = l_iter.__next__()
print(item)
item = l_iter.__next__()
print(item)
item = l_iter.__next__()
print(item)
item = l_iter.__next__()
print(item)
item = l_iter.__next__()
print(item)
这是一段会报错的代码,如果我们一直取next取到迭代器里已经没有元素了,就会抛出一个异常StopIteration,告诉我们,列表中已经没有有效的元素了。
这个时候,我们就要使用异常处理机制来把这个异常处理掉。
l = [1,2,3,4] l_iter = l.__iter__() while True: try: item = l_iter.__next__() print(item) except StopIteration: break
那现在我们就使用while循环实现了原本for循环做的事情,我们是从谁那儿获取一个一个的值呀?是不是就是l_iter?好了,这个l_iter就是一个迭代器。
迭代器遵循迭代器协议:必须拥有__iter__方法和__next__方法。
小结:
可迭代对象:
拥有__iter__方法 (遵循可迭代协议),也就是说可以进行for循环的对象
例如:range(),str,list,tuple,dict,set
特点:惰性运算
迭代器Iterator:
拥有__iter__方法和__next__方法
例如:iter(range), iter(str), iter(tuple) 生成器,(列表生成式,带yield函数)
#iter()函数可以将可迭代对象变为迭代器
生成器Generator:
本质:迭代器,所以拥有__iter__方法和__next__方法
特点:惰性运算,开发者自定义
使用生成器的优点:
1。延迟计算,一次返回一个结果,也就是说,他不会一次生成所有的结果,这对于大数据量处理,将会非常有用。
#列表解析 sum([i for i in range(100000000)])#内存占用大,机器容易卡死 #生成器表达式 sum(i for i in range(100000000))#几乎不占内存
以上是关于Python3-生成器&迭代器的主要内容,如果未能解决你的问题,请参考以下文章