强化学习python 实现 q-learning 例二

Posted 罗兵の水库

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了强化学习python 实现 q-learning 例二相关的知识,希望对你有一定的参考价值。

本文作者:hhh5460

本文地址:https://www.cnblogs.com/hhh5460/p/10134855.html

问题情境

一个2*2的迷宫,一个入口,一个出口,还有一个陷阱。如图

(图片来源:https://jizhi.im/blog/post/intro_q_learning)

 这是一个二维的问题,不过我们可以把这个降维,变为一维的问题。

感谢:https://jizhi.im/blog/post/intro_q_learning。网上看了无数文章,无数代码,都不得要领!直到看了这篇里面的三个矩阵:reward,transition_matrix,valid_actions才真正理解q-learning算法如何操作,如何实现!

 Kaiser的代码先睹为快,绝对让你秒懂q-learning算法,当然我也做了部分润色:

import numpy as np
import random

\'\'\'
2*2的迷宫
---------------
| 入口 |      |
---------------
| 陷阱 | 出口 |
---------------
# 来源:https://jizhi.im/blog/post/intro_q_learning

每个格子是一个状态,此时都有上下左右停5个动作

任务:通过学习,找到一条通径
\'\'\'

gamma = 0.7

#                    u,   d,   l,  r,  n
reward = np.array([( 0, -10,   0, -1, -1), #0,状态0
                   ( 0,  10,  -1,  0, -1), #1
                   (-1,   0,   0, 10, -1), #2
                   (-1,   0, -10,  0, 10)],#3
                   dtype=[(\'u\',float),(\'d\',float),(\'l\',float),(\'r\',float),(\'n\',float)])

q_matrix = np.zeros((4, ),
                    dtype=[(\'u\',float),(\'d\',float),(\'l\',float),(\'r\',float),(\'n\',float)])

transition_matrix = np.array([(-1,  2, -1,  1, 0), # 如 state:0,action:\'d\' --> next_state:2
                              (-1,  3,  0, -1, 1),
                              ( 0, -1, -1,  3, 2),
                              ( 1, -1,  2, -1, 3)],
                              dtype=[(\'u\',int),(\'d\',int),(\'l\',int),(\'r\',int),(\'n\',int)])

valid_actions = np.array([[\'d\', \'r\', \'n\'], #0,状态0
                          [\'d\', \'l\', \'n\'], #1
                          [\'u\', \'r\', \'n\'], #2
                          [\'u\', \'l\', \'n\']])#3


for i in range(1000):
    current_state = 0
    while current_state != 3:
        current_action = random.choice(valid_actions[current_state]) # 只有探索,没有利用
        
        next_state = transition_matrix[current_state][current_action]
        next_reward = reward[current_state][current_action]
        next_q_values = [q_matrix[next_state][next_action] for next_action in valid_actions[next_state]] #待取最大值
        
        q_matrix[current_state][current_action] = next_reward + gamma * max(next_q_values) # 贝尔曼方程(不完整)
        current_state = next_state

print(\'Final Q-table:\')
print(q_matrix)
View Code

 

0.相关参数

epsilon = 0.9   # 贪婪度 greedy
alpha = 0.1     # 学习率
gamma = 0.8     # 奖励递减值

 

1.状态集

探索者的状态,即其可到达的位置,有4个。所以定义

states = range(4) # 状态集,从0到3

那么,在某个状态下执行某个动作之后,到达的下一个状态如何确定呢?

def get_next_state(state, action):
    \'\'\'对状态执行动作后,得到下一状态\'\'\'
    #u,d,l,r,n = -2,+2,-1,+1,0
    if state % 2 != 1 and action == \'r\':    # 除最后一列,皆可向右(+1)
        next_state = state + 1
    elif state % 2 != 0 and action == \'l\':  # 除最前一列,皆可向左(-1)
        next_state = state -1
    elif state // 2 != 1 and action == \'d\': # 除最后一行,皆可向下(+2)
        next_state = state + 2
    elif state // 2 != 0 and action == \'u\': # 除最前一行,皆可向上(-2)
        next_state = state - 2
    else:
        next_state = state
    return next_state

 

2.动作集

探索者处于每个状态时,可行的动作,只有上下左右4个。所以定义

actions = [\'u\', \'d\', \'l\', \'r\'] # 动作集。上下左右,也可添加动作\'n\',表示停留

那么,在某个给定的状态(位置),其所有的合法动作如何确定呢?

def get_valid_actions(state):
    \'\'\'取当前状态下的合法动作集合,与reward无关!\'\'\'
    global actions # [\'u\',\'d\',\'l\',\'r\',\'n\']
    
    valid_actions = set(actions)
    if state % 2 == 1:                              # 最后一列,则
        valid_actions = valid_actions - set([\'r\'])  # 去掉向右的动作
    if state % 2 == 0:                              # 最前一列,则
        valid_actions = valid_actions - set([\'l\'])  # 去掉向左
    if state // 2 == 1:                             # 最后一行,则
        valid_actions = valid_actions - set([\'d\'])  # 去掉向下
    if state // 2 == 0:                             # 最前一行,则
        valid_actions = valid_actions - set([\'u\'])  # 去掉向上
    return list(valid_actions)

 

3.奖励集

探索者到达每个状态(位置)时,要有奖励。所以定义

rewards = [0,0,-10,10] # 奖励集。到达位置3(出口)奖励10,位置2(陷阱)奖励-10,其他皆为0

显然,取得某状态state下的奖励就很简单了:rewards[state] 。根据state,按图索骥即可,无需额外定义一个函数。

 

4.Q table

最重要。Q table是一种记录状态-行为值 (Q value) 的表。常见的q-table都是二维的,基本长下面这样:

 注意,也有3维的Q table)

所以定义

q_table = pd.DataFrame(data=[[0 for _ in actions] for _ in states],
                       index=states, columns=actions)

 

5.Q-learning算法

Q-learning算法的伪代码

Q value的更新是根据贝尔曼方程:

$$Q(s_t,a_t) \\leftarrow Q(s_t,a_t) + \\alpha[r_{t+1} + \\lambda \\max _{a} Q(s_{t+1}, a) - Q(s_t,a_t)] \\tag {1}$$

好吧,是时候实现它了:

# 总共探索300次
for i in range(300):
    # 0.从最左边的位置开始(不是必要的)
    current_state = 0
    #current_state = random.choice(states)
    while current_state != states[-1]:
        # 1.取当前状态下的合法动作中,随机(或贪婪)地选一个作为 当前动作
        if (random.uniform(0,1) > epsilon) or ((q_table.ix[current_state] == 0).all()):  # 探索
            current_action = random.choice(get_valid_actions(current_state))
        else:
            current_action = q_table.ix[current_state].idxmax() # 利用(贪婪)
        # 2.执行当前动作,得到下一个状态(位置)
        next_state = get_next_state(current_state, current_action)
        # 3.取下一个状态所有的Q value,待取其最大值
        next_state_q_values = q_table.ix[next_state, get_valid_actions(next_state)]
        # 4.根据贝尔曼方程,更新 Q table 中当前状态-动作对应的 Q value
        q_table.ix[current_state, current_action] += alpha * (rewards[next_state] + gamma * next_state_q_values.max() - q_table.ix[current_state, current_action])
        # 5.进入下一个状态(位置)
        current_state = next_state

print(\'\\nq_table:\')
print(q_table)

可以看到,与例一的代码一模一样,不差一字!

 

6.环境及其更新

这里的环境貌似必须用到GUI,有点麻烦;而在命令行下,我又不知如何实现。所以暂时算了,不搞了。

 

7.完整代码

\'\'\'
最简单的四个格子的迷宫
---------------
| start |     |
---------------
|  die  | end |
---------------

每个格子是一个状态,此时都有上下左右4个动作

作者:hhh5460
时间:20181217
\'\'\' import pandas as pd import random epsilon = 0.9 # 贪婪度 greedy alpha = 0.1 # 学习率 gamma = 0.8 # 奖励递减值 states = range(4) # 0, 1, 2, 3 四个状态 actions = list(\'udlr\') # 上下左右 4个动作。还可添加动作\'n\',表示停留 rewards = [0,0,-10,10] # 奖励集。到达位置3(出口)奖励10,位置2(陷阱)奖励-10,其他皆为0 q_table = pd.DataFrame(data=[[0 for _ in actions] for _ in states], index=states, columns=actions) def get_next_state(state, action): \'\'\'对状态执行动作后,得到下一状态\'\'\' #u,d,l,r,n = -2,+2,-1,+1,0 if state % 2 != 1 and action == \'r\': # 除最后一列,皆可向右(+1) next_state = state + 1 elif state % 2 != 0 and action == \'l\': # 除最前一列,皆可向左(-1) next_state = state -1 elif state // 2 != 1 and action == \'d\': # 除最后一行,皆可向下(+2) next_state = state + 2 elif state // 2 != 0 and action == \'u\': # 除最前一行,皆可向上(-2) next_state = state - 2 else: next_state = state return next_state def get_valid_actions(state): \'\'\'取当前状态下的合法动作集合 global reward valid_actions = reward.ix[state, reward.ix[state]!=0].index return valid_actions \'\'\' # 与reward无关! global actions valid_actions = set(actions) if state % 2 == 1: # 最后一列,则 valid_actions = valid_actions - set([\'r\']) # 无向右的动作 if state % 2 == 0: # 最前一列,则 valid_actions = valid_actions - set([\'l\']) # 无向左 if state // 2 == 1: # 最后一行,则 valid_actions = valid_actions - set([\'d\']) # 无向下 if state // 2 == 0: # 最前一行,则 valid_actions = valid_actions - set([\'u\']) # 无向上 return list(valid_actions) # 总共探索300次 for i in range(300): # 0.从最左边的位置开始(不是必要的) current_state = 0 #current_state = random.choice(states) while current_state != states[-1]: # 1.取当前状态下的合法动作中,随机(或贪婪)地选一个作为 当前动作 if (random.uniform(0,1) > epsilon) or ((q_table.ix[current_state] == 0).all()): # 探索 current_action = random.choice(get_valid_actions(current_state)) else: current_action = q_table.ix[current_state].idxmax() # 利用(贪婪) # 2.执行当前动作,得到下一个状态(位置) next_state = get_next_state(current_state, current_action) # 3.取下一个状态所有的Q value,待取其最大值 next_state_q_values = q_table.ix[next_state, get_valid_actions(next_state)] # 4.根据贝尔曼方程,更新 Q table 中当前状态-动作对应的 Q value q_table.ix[current_state, current_action] += alpha * (rewards[next_state] + gamma * next_state_q_values.max() - q_table.ix[current_state, current_action]) # 5.进入下一个状态(位置) current_state = next_state print(\'\\nq_table:\') print(q_table)

 

8.效果图

 

9.补充

又搞了一个numpy版本,比pandas版本的快了一个数量级!!代码如下

\'\'\'
最简单的四个格子的迷宫
---------------
| start |     |
---------------
|  die  | end |
---------------

每个格子是一个状态,此时都有上下左右停5个动作
\'\'\'

# 作者:hhh5460
# 时间:20181218

import numpy as np


epsilon = 0.9   # 贪婪度 greedy
alpha = 0.1     # 学习率
gamma = 0.8     # 奖励递减值

states = range(4)       # 0, 1, 2, 3 四个状态
actions = list(\'udlrn\') # 上下左右停 五个动作
rewards = [0,0,-10,10]  # 奖励集。到达位置3(出口)奖励10,位置2(陷阱)奖励-10,其他皆为0


# 给numpy数组的列加标签,参考https://cloud.tencent.com/developer/ask/72790
q_table = np.zeros(shape=(4, ), # 坑二:这里不能是(4,5)!!
                   dtype=list(zip(actions, [\'float\']*5)))
                   #dtype=[(\'u\',float),(\'d\',float),(\'l\',float),(\'r\',float),(\'n\',float)])
                   #dtype={\'names\':actions, \'formats\':[float]*5})

def get_next_state(state, action):
    \'\'\'对状态执行动作后,得到下一状态\'\'\'
    #u,d,l,r,n = -2,+2,-1,+1,0
    if state % 2 != 1 and action == \'r\':    # 除最后一列,皆可向右(+1)
        next_state = state + 1
    elif state % 2 != 0 and action == \'l\':  # 除最前一列,皆可向左(-1)
        next_state = state -1
    elif state // 2 != 1 and action == \'d\': # 除最后一行,皆可向下(+2)
        next_state = state + 2
    elif state // 2 != 0 and action == \'u\': # 除最前一行,皆可向上(-2)
        next_state = state - 2
    else:
        next_state = state
    return next_state
        

def get_valid_actions(state):
    \'\'\'取当前状态下的合法动作集合,与reward无关!\'\'\'
    global actions # [\'u\',\'d\',\'l\',\'r\',\'n\']
    
    valid_actions = set(actions)
    if state % 2 == 1:                              # 最后一列,则
        valid_actions = valid_actions - set([\'r\'])  # 去掉向右的动作
    if state % 2 == 0:                              # 最前一列,则
        valid_actions = valid_actions - set([\'l\'])  # 去掉向左
    if state // 2 == 1:                             # 最后一行,则
        valid_actions = valid_actions - set([\'d\'])  # 去掉向下
    if state // 2 == 0:                             # 最前一行,则
        valid_actions = valid_actions - set([\'u\'])  # 去掉向上
    return list(valid_actions)
    
    
for i in range(1000):
    #current_state = states[0] # 固定
    current_state = np.random.choice(states,1)[0]
    while current_state != 3:
        if (np.random.uniform() > epsilon) or ((np.array(list(q_table[current_state])) == 0).all()):  # q_table[current_state]是numpy.void类型,只能这么操作!!
            current_action = np.random.choice(get_valid_actions(current_state), 1)[0]
        else:
            current_action = actions[np.array(list(q_table[current_state])).argmax()] # q_table[current_state]是numpy.void类型,只能这么操作!!
        next_state = get_next_state(current_state, current_action)
        next_state_q_values = [q_table[next_state][action] for action in get_valid_actions(next_state)]
        q_table[current_state][current_action] = rewards[next_state] + gamma * max(next_state_q_values)
        current_state = next_state
        
        
print(\'Final Q-table:\')
print(q_table)
View Code

 

10.补充2:三维Q table实现!

经过不断的试验,终于撸出了一个三维版的Q table,代码如下!

\'\'\'
最简单的四个格子的迷宫
---------------
| start |     |
---------------
|  die  | end |
---------------

每个格子是一个状态,此时都有上下左右停5个动作
\'\'\'

\'\'\'三维 Q table 版!!\'\'\'

# 作者:hhh5460
# 时间:20181218

import numpy as np
import random # np.random.choice不能选二维元素!

epsilon = 0.9   # 贪婪度 greedy
alpha = 0.1     # 学习率
gamma = 0.8     # 奖励递减值

states = [(0,0),(0,1),(1,0),(1,1)] #状态集,四个位置
actions = [(-1,0),(1,0),(0,-1),(0,1)] #动作集,上下左右
rewards = [[  0., 0.],    # 奖励集
           [-10.,10.]]

# q_table是三维的,注意把动作放在了第三维!
# 最里面的[0.,0.,0.,0.]表示某一个状态(格子)对应的四个动作“上下左右”的Q value
q_table = np.array([[[0.,0.,0.,0.],[0.,0.,0.,0.]],
                    [[0.,0.,0.,0.],[0.,0.,0.,0.]]])

def get_next_state(state, action):
    \'\'\'对状态执行动作后,得到下一状态\'\'\'
    if ((state[1] == 1 and action == (0,1))  or # 最后一列、向右
        (state[1] == 0 and action == (0,-1)) or # 最前一列、向左
        (state[0] == 1 and action == (1,0))  or # 最后一行、向下
        (state[0] == 0 and action == (-1,0))):  # 最前一行、向上
        next_state = state
    else:
        next_state = (state[0] + action[0], state[1] + action[1])
    return next_state
    
def get_valid_actions(state):
    \'\'\'取当前状态下的合法动作集合\'\'\'
    valid_actions = []
    if state[1] < 1:  # 除最后一列,可向右
        valid_actions.append((0,1))
    if state[1] > 0:  # 除最前一列,可向左(-1)
        valid_actions.append((0,-1))
    if state[0] < 1:  # 除最后一行,可向下
        valid_actions.append((1,0))
    if state[0] > 0:  # 除最前一行,可向上
        valid_actions.append((-1,0))
    return valid_actions

# 总共探索300次
for i in range(1000):
    # 0.从最左边的位置开始(不是必要的)
    current_state = (0,0)
    #current_state = random.choice(states)
    #current_state = tuple(np.random.randint(2, size=2))
    while current_state != states[-1]:
        # 1.取当前状态下的合法动作中,随机(或贪婪)地选一个作为 当前动作
        if (np.random.uniform() > epsilon) or ((q_table[current_state[0],current_state[1]] == 0).all()):  # 探索
            current_action = random.choice(get_valid_actions(current_state))
        else:
            current_action = actions[q_table[current_state[0],current_state[1]].argmax()] # 利用(贪婪)
        # 2.执行当前动作,得到下一个状态(位置)
        next_state = get_next_state(current_state, current_action)
        # 3.取下一个状态所有的Q value,待取其最大值
        next_state_q_values = [q_table[next_state[0],next_state[1],actions.index(action)] for action in get_valid_actions(next_state)]
        # 4.根据贝尔曼方程,更新 Q table 中当前状态-动作对应的 Q value
        q_table[current_state[0],current_state[1],actions.index(current_action)] += alpha * (rewards[next_state[0]][next_state[1]] + gamma * max(next_state_q_values) - q_table[current_state[0],current_state[1],actions.index(current_action)])
        # 5.进入下一个状态(位置)
        current_state = next_state


print(\'\\nq_table:\')
print(q_table)
View Code

 

 11.课后思考题

有缘看到此文的朋友,请尝试下实现更大规模的迷宫问题,评论交作业哦。迷宫如下:

 (图片来源:https://jizhi.im/blog/post/intro_q_learning)

 

以上是关于强化学习python 实现 q-learning 例二的主要内容,如果未能解决你的问题,请参考以下文章

python强化学习实例:寻路Q-Learn演示

强化学习Q-Learning算法及实现详解

强化学习 学习资料汇总强化学习:Q-learning与DQN(Deep Q Network)

强化学习 5 —— SARSA 和 Q-Learning算法代码实现

MATLAB教程案例66基于Q-learning强化学习的智能体栅格地图路线规划matlab仿真

强化学习 Q-learning 实例详解