数据分析缺失值处理(Missing Values)——删除法填充法插值法
Posted VipSoft
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了数据分析缺失值处理(Missing Values)——删除法填充法插值法相关的知识,希望对你有一定的参考价值。
缺失值指数据集中某些变量的值有缺少的情况,缺失值也被称为NA(not available)值。在pandas里使用浮点值NaN(Not a Number)表示浮点数和非浮点数中的缺失值,用NaT表示时间序列中的缺失值,此外python内置的None值也会被当作是缺失值。需要注意的是,有些缺失值也会以其他形式出现,比如说用NULL,0或无穷大(inf)表示。
pip install d2l -i https://pypi.tuna.tsinghua.edu.cn/simple
import os
import pandas as pd
# 添加 测试数据
os.makedirs(os.path.join(\'.\', \'data\'), exist_ok=True)
data_file = os.path.join(\'.\', \'data\', \'house_tiny.csv\')
with open(data_file, \'w\') as f:
f.write(\'NumRooms,Alley,Test,Price\\n\')
f.write(\'NA,Pave,NA,127500\\n\')
f.write(\'2,D,A,106000\\n\')
f.write(\'4,NA,NA,178100\\n\')
f.write(\'NA,NA,B,14000\\n\')
# 读取 csv 数据
data = pd.read_csv(data_file)
print("\\nCSV data => \\n", data)
print("-" * 60)
# 检测缺失值
res_null = pd.isnull(data)
print("\\nres_null => \\n", res_null)
print("\\nres_null.sum() => \\n", res_null.sum())
# 通过位置索引iloc,将 data 分成 inputs、 outputs
inputs, outputs = data.iloc[:, 0:3], data.iloc[:, 3]
print("-" * 60)
删除法
简单,但是容易造成数据的大量丢失
1、删除全为空值的行或列
data=data.dropna(axis=0,how=\'all\') # 只删除【全行】为缺失值的行数据
data=data.dropna(axis=1,how=\'all\') # 只删除【全列】为缺失值的列数据
2、删除含有空值的行或列
data=data.dropna(axis=0,how=\'any\') # 只要【行】中有缺失值的,删除该【行】数据
data=data.dropna(axis=1,how=\'any\') # 只要【列】中有缺失值的,删除该列数据
axis : 0或\'index\',1或\'columns\',默认0
确定是否删除包含缺失值的行或列。
0或’index’:删除包含缺失值的行。
1或“列”:删除包含缺失值的列。
从0.23.0版开始不推荐使用:将元组或列表传递到多个轴上。只允许一个轴。
how : \'any\',\'all\',默认为\'any\'
当我们有至少一个NA或全部NA时,确定是否从DataFrame中删除行或列。
\'any\':如果存在任何NA值,则删除该行或列。
\'all\':如果所有值均为NA,则删除该行或列。
thresh : int,可选
需要许多非NA值。
subset :类数组,可选
要考虑的其他轴上的标签,例如,如果要删除行,这些标签将是要包括的列的列表。
inplace : bool,默认为False
如果为True,则对数据源进行生效
示例
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(5, 3), index=list(\'abcde\'), columns=[\'one\', \'two\', \'three\']) # 随机产生5行3列的数据
print(df)
df.iloc[1, :] = np.nan # 将指定数据定义为缺失
df.iloc[1:-1, 2] = np.nan
print("-" * 60)
print(df)
print("-" * 60)
print(df.dropna(axis=0))
import os
import pandas as pd
"""
删除法:
简单,但是容易造成数据的大量丢失
how = "any" 只要有缺失值就删除
how = "all" 只删除全行为缺失值的行
axis = 1 丢弃有缺失值的列(一般不会这么做,这样会删掉一个特征), 默认值为:0
"""
# 添加 测试数据
data_file = os.path.join(\'.\', \'data\', \'house_tiny.csv\')
"""
输入:
NumRooms Alley Test Price
0 NaN Pave NaN 127500.0
1 2.0 D NaN 106000.0
2 4.0 NaN NaN 178100.0
3 NaN NaN NaN NaN
输出:
NumRooms Alley Test Price
0 NaN Pave NaN 127500.0
1 2.0 D NaN 106000.0
2 4.0 NaN NaN 178100.0
"""
print("-" * 60)
with open(data_file, \'w\') as f:
f.write(\'NumRooms,Alley,Test,Price\\n\')
f.write(\'NA,Pave,NA,127500\\n\')
f.write(\'2,D,NA,106000\\n\')
f.write(\'4,NA,NA,178100\\n\')
f.write(\'NA,NA,NA,NA\\n\')
data = pd.read_csv(data_file)
print("\\nCSV data => \\n", data)
data.dropna(how="all", axis=0, inplace=True)
print("删除之后的结果,只删除全行为缺失值的行数据: \\n", data)
"""
输入:
NumRooms Alley Test Price
0 NaN Pave NaN 127500.0
1 2.0 D NaN 106000.0
2 4.0 NaN NaN 178100.0
3 NaN NaN NaN NaN
输出:
NumRooms Alley Price
0 NaN Pave 127500.0
1 2.0 D 106000.0
2 4.0 NaN 178100.0
3 NaN NaN NaN
"""
print("-" * 60)
data.dropna(how="all", axis=1, inplace=True)
print("删除之后的结果,只删除全列为缺失值的列数据: \\n", data)
"""
输入:
NumRooms Alley Test Price
0 NaN Pave A 127500.0
1 2.0 D E 106000.0
2 4.0 NaN NaN 178100.0
3 NaN NaN B NaN
输出:
NumRooms Alley Test Price
1 2.0 D E 106000.0
"""
with open(data_file, \'w\') as f:
f.write(\'NumRooms,Alley,Test,Price\\n\')
f.write(\'NA,Pave,A,127500\\n\')
f.write(\'2,D,E,106000\\n\')
f.write(\'4,NA,NA,178100\\n\')
f.write(\'NA,NA,B,NA\\n\')
data = pd.read_csv(data_file)
print("\\nCSV data => \\n", data)
print("-" * 60)
data.dropna(how="any", axis=0, inplace=True)
print("删除之后的结果,只要【行】中有缺失值的,删除该【行】数据: \\n", data)
"""
输入:
NumRooms Alley Test Price
0 NaN Pave A 127500
1 2.0 D E 106000
2 4.0 NaN C 178100
3 NaN NaN B 14000
输出:
Test Price
0 A 127500
1 E 106000
2 C 178100
3 B 14000
"""
with open(data_file, \'w\') as f:
f.write(\'NumRooms,Alley,Test,Price\\n\')
f.write(\'NA,Pave,A,127500\\n\')
f.write(\'2,D,E,106000\\n\')
f.write(\'4,NA,C,178100\\n\')
f.write(\'NA,NA,B,14000\\n\')
data = pd.read_csv(data_file)
print("\\nCSV data => \\n", data)
print("-" * 60)
data.dropna(how="any", axis=1, inplace=True)
print("删除之后的结果,只要【列】中有缺失值的,删除该列数据: \\n", data)
"""
输入:
NumRooms Alley Test Price
0 NaN Pave A 127500
1 2.0 D E 106000
2 4.0 C NaN 178100
3 NaN NaN B 14000
输出:
NumRooms Alley Test Price
0 NaN Pave A 127500
1 2.0 D E 106000
"""
with open(data_file, \'w\') as f:
f.write(\'NumRooms,Alley,Test,Price\\n\')
f.write(\'NA,Pave,A,127500\\n\')
f.write(\'2,D,E,106000\\n\')
f.write(\'4,C,NA,178100\\n\')
f.write(\'NA,NA,B,14000\\n\')
data = pd.read_csv(data_file)
print("\\nCSV data => \\n", data)
print("-" * 60)
dt = data.dropna(subset=["Alley", "Test"])
print("删除之后的结果,删除 \'Alley\', \'Test\': 有空值的行。\\n", dt)
填充法
只要不影响数据分布或者对结果影响不是很大的情况
数值型 ——可以使用均值、众数、中位数来填充,也可以使用这一列的上下邻居数据来填充
类别数据(非数值型) ——可以使用众数来填充,也可以使用这一列的上下邻居数据来填充
使用众数来填充非数值型数据
fillna():使用指定的方法填充NA/NaN值。
返回值:DataFrame 缺少值的对象已填充。不改变原序列值。
参数解释
- value :scalar(标量), dict, Series, 或DataFrame
用于填充孔的值(例如0),或者是dict / Series / DataFrame的值,
该值指定用于每个索引(对于Series)或列(对于DataFrame)使用哪个值。
不在dict / Series / DataFrame中的值将不被填充。该值不能是列表(list)。 - method : ‘backfill’,‘bfill’,‘pad’,‘ffill’,None,默认为None
填充重新索引的系列填充板/填充中的holes的方法:
将最后一个有效观察向前传播到下一个有效回填/填充:
使用下一个有效观察来填充间隙。 - axis : 0或’index’,1或’columns’
填充缺失值所沿的轴。
inplace : bool,默认为False
如果为True,则就地填充。
注意:这将修改此对象上的任何其他视图
(例如,DataFrame中列的无副本切片)。 - limit : int,默认值None
如果指定了method,
则这是要向前/向后填充的连续NaN值的最大数量。
换句话说,如果存在连续的NaN数量大于此数量的缺口,
它将仅被部分填充。如果未指定method,
则这是将填写NaN的整个轴上的最大条目数
如果不为None,则必须大于0。 - downcast : dict,默认为None
item-> dtype的字典,如果可能的话,将向下转换,
或者是字符串“infer”,
它将尝试向下转换为适当的相等类型
(例如,如果可能,则从float64到int64)。
import os
import pandas as pd
# 添加 测试数据
data_file = os.path.join(\'.\', \'data\', \'house_tiny.csv\')
with open(data_file, \'w\') as f:
f.write(\'NumRooms,Alley,Test,Price\\n\')
f.write(\'NA,Pave,NA,127500\\n\')
f.write(\'2,D,NA,106000\\n\')
f.write(\'4,NA,NA,178100\\n\')
f.write(\'NA,NA,NA,NA\\n\')
data = pd.read_csv(data_file)
print("\\nCSV data => \\n", data)
print("-" * 60)
# 处理缺失值,替换法 - 用当前列的平均值,填充 NaN
# 通过位置索引iloc,将 data 分成 inputs、 outputs
inputs, outputs = data.iloc[:, 0:4], data.iloc[:, 3]
a = inputs.fillna(inputs.mean())
print("\\ninputs.fillna => \\n", a)
b = inputs.fillna(inputs.mean(), limit=1)
print("\\ninputs.fillna => \\n", b)
插值法
最常用的插值函数就是interp1d,按照字面意思理解就是插值一个一维函数。其必不可少的输入参数,就是将要被插值的函数的自变量和因变量,输出为被插值后的函数
而所谓插值,要求只能在特定的两个值之间插入,而对于超出定义域范围的值,是无法插入的
在无声明的情况下,插值方法默认是线性插值linear,如有其他需求,可变更kind参数来实现,可选插值方法如下:
- 样条插值:其0、1、2、3阶插值参数分别为zero、slinear、quadratic、cubic
- 返回单点:next和previous用于返回上一个或下一个值
- 最邻近插值:nearest采取向下取整;nearest-up采用向上取整。
import numpy as np
import matplotlib.pyplot as plt
import scipy.interpolate as si
x = np.arange(0, 10, 0.1)
y = np.sin(x)
plt.plot(x, y, \'o\')
plt.show()
xnew = np.arange(0, 99)/10
f = si.interp1d(x, y)
ynew = f(xnew) #调用经由interp1d返回的函数
plt.plot(x, y, \'o\', xnew, ynew, \'-\')
plt.show()
import numpy as np
import matplotlib.pyplot as plt
import scipy.interpolate as si
x = np.arange(10)
y = np.sin(x)
plt.scatter(x[1:-1],y[1:-1])
xNew = np.arange(1,9,0.1)
ks = [\'zero\', \'slinear\', \'quadratic\', \'cubic\']
cs = [\'r\', \'g\', \'b\', \'gray\']
for i in range(4):
f = si.interp1d(x,y,kind=ks[i])
plt.plot(xNew, f(xNew), c=cs[i])
plt.show()
下图中,红、绿、蓝、灰分别代表0到3次插值,可见,尽管只有10个点,但分段的二次函数已经描绘出了三角函数的形状,其插值效果还是不错的。
import numpy as np
from scipy.interpolate import interp1d
from scipy.interpolate import lagrange
# 插值法
# 线性插值 ——你和线性关系进行插值
# 多项式插值 ——拟合多项式进行插值
# 拉格朗日多项式插值、牛顿多项式插值
# 样条插值 ——拟合曲线进行插值
# 对于线型关系,线型插值,表现良好,多项式插值,与样条插值也表现良好
# 对于非线型关系,线型插值,表现不好,多项式插值,与样条插值表现良好
# 推荐如果想要使用插值方式,使用拉格朗日插值和样条插值
x = np.array([1, 2, 3, 4, 5, 8, 9])
y = np.array([3, 5, 7, 9, 11, 17, 19])
z = np.array([2, 8, 18, 32, 50 ,128, 162])
# 线型插值
linear_1 = interp1d(x=x, y=y, kind="linear")
linear_2 = interp1d(x=x, y=z, kind="linear")
linear_3 = interp1d(x=x, y=y, kind="cubic")
print("线性插值: \\n", linear_1([6, 7])) # [13. 15.] 注意不是1是第一个索引
# print("线性插值: \\n", linear_1([5, 6])) # [11. 13.]
print("线性插值: \\n", linear_2([6, 7])) # [76. 102]
print("线性插值: \\n", linear_3([6, 7])) # [76. 102]
# 拉格朗日插值
la_1 = lagrange(x=x, w=y)
la_2 = lagrange(x=x, w=y)
print("拉格朗日: \\n", la_1) # [13, 15]
print("拉格朗日: \\n", la_2) # [72, 98]
转换为张量格式
import os
import pandas as pd
import numpy as np
import paddle
data_file = os.path.join(\'.\', \'data\', \'house_tiny.csv\')
with open(data_file, \'w\') as f:
f.write(\'NumRooms,Alley,Test,Price\\n\')
f.write(\'NA,Pave,NA,127500\\n\')
f.write(\'2,D,NA,106000\\n\')
f.write(\'4,NA,NA,178100\\n\')
f.write(\'NA,NA,NA,NA\\n\')
data = pd.read_csv(data_file)
# 对于非NaN类型的数据——先将非NaN类型的数据转化为np.nan
data.replace("*", np.nan, inplace=True)
print("data: \\n", data)
print(type(np.nan))
inputs, outputs = data.iloc[:, 0:4], data.iloc[:, 3]
print("-" * 60)
# 把离散的类别信息转化为 one-hot 编码形式
inputs = pd.get_dummies(inputs, dummy_na=True)
print("\\none-hot => \\n", inputs)
# 转换为张量格式
x, y = paddle.to_tensor(inputs.values), paddle.to_tensor(outputs.values)
print("\\n to_tensor => \\n", x, y)
pandas使用fillna函数并设置fffill参数使用列中的前序值填充缺失值(replace missing values with preceding values in column in d
pandas使用fillna函数并设置fffill参数使用列中的前序值填充缺失值(replace missing values with preceding values in column in dataframe)
目录
以上是关于数据分析缺失值处理(Missing Values)——删除法填充法插值法的主要内容,如果未能解决你的问题,请参考以下文章
R语言使用complete.cases函数筛选出dataframe中不包含缺失值的所有数据行(select rows not have missing values)
pandas返回dataframe中指定数据列包含缺失值的数据行(rows with missing values in specific column of dataframe)
R语言里填充(impute)缺失值(missing values)的几个简单小例子
R语言进行缺失值填充(Filling in missing values):使用R原生方法data.tabledplyr等方案
pandas使用notna函数all函数sum函数计算dataframe中不包含缺失值的数据行的个数(number of rows without missing values)
pandas使用fillna函数并设置fffill参数使用列中的前序值填充缺失值(replace missing values with preceding values in column in d