ThreadLocal 详解
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ThreadLocal 详解相关的知识,希望对你有一定的参考价值。
参考技术A ThreadLocal 是一个线程的内部存储类,对于被存储的对象,在不同的线程读取的变量是独立的。实现原理是:对每一个线程都有一个ThreadLocalMap,ThreadLocal维护每个ThreadLocalMap中的值
ThreadLocalMap 内部是一个[]Enter, 不同的ThreadLocal都是存储在线程的同一个ThreadLocalMap中的,只是下标位置不同,
同一个ThreadLocal在不同线程的ThreadLocalMap中的下标值即索引值是相同的。
ThreadLocal 最常用的示例:
在主线程初始化ThreadLocal实例,在各个线程调用set、get,设置、获取存储在各个线程中的值
查看源码
当调用set函数时,会去获取当前线程的ThreadLocalMap对象,该对象是在Thread.java中申明,默认值为null。
当map为null时,则调用createMap,为threadLocals对象赋值,不为null,在调用ThreadLocalMap中的set函数,将值保存到数组中
当调用get方法时,获取当前线程的ThreadLocalMap对象,如果map不为null,则获取map持有的Entry对象,再返回该Entry对象持有的value值。
如果map为null或者获取的Enter对象为null,则会调用setInitialValue,而initialValue的返回值是null。
当map为null时,会调用createMap方法,实例化ThreadLocalMap
上面的set、get都会调用getMap方法,来获取当前线程的ThreadLocalMap实例
threadLocals 是在Thread.java中声明的,默认值为null,也就是说每个线程中都有这个对象,只是默认是null。
在set、get中都会对当前线程的ThreadLocalMap对象判断,当为null时,会调用createMap对ThreadLocalMap对象threadLocals赋值,
getEntry 函数就是获取key对应的节点Entry
在getEntry、set函数中可以看到value存储在[]Entry中的下标位置是由 key.threadLocalHashCode & (len-1)计算得出的。
就是ThreadLocal中的threadLocalHashCode 对[]Entry长度取模
getEntry,通过下标获取e,如果不为null而且再次校验key相等,则返回e
set时,e不为null,而且key相等,代表已存在,则替换e.value,
key不相等,代表不存在,而添加
当Entry[] 中存入的值数量已达到数组长度的3/4;
则会调用resize函数,调整Entry[]的长度,
将新数组长度*2,遍历老数组,
重新获取下标h,判断h处是否有值,无值填充,有值则重新获取h,再填充
ThreadLocalMap 的内部类
Entry继承WeakReference,说明ThreadLocal内部存储的类型都是采取弱引用累心存储,当GC时,则会被回收。
这样保证当线程执行完时,当前线程中存储在ThreadLocalMap中的对象会被回收,不会在此处出现内存泄漏
value是调用ThreadLocal保存的值,
ThreadLocal详解
ThreadLocal详解(二)
上一篇文章讲了ThreadLocal的get、set、resize等方法的源码,但是对于一些单独的方法例如cleanSomeSlots、expungeStaleEntry并没有讲述,这一节就是要讲述这些源码,在讲之前首先提几个ThreadLocal的注意事项,一般来说就是ThreadLocal如果在使用不当的情况下会出现内存泄漏的问题,其原因就在于如果在线程清除时没有清除ThreadLocal中的变量,因为ThreadLocal中的key是当前线程的一个弱引用,此时当当前线程结束后,该key就变为null了,此时ThreadLocalMap中就出现了key为null,但是value仍然有值的情况,此时就出现了内存泄露。
改进
为了解决因使用不当可能存在的内存泄漏问题,Doug Lea大师还是做了一些改进来尽可能的避免出现内存泄露,就是方法cleanSomeSlots、expungeStaleEntry、replaceStaleEntry,现在就来看看这三个方法做了哪些措施避免出现内存泄露问题。
replaceStaleEntry
原本准备先说cleanSomeSlots方法,但是在set操作源码中对于key的处理中,有replaceStaleEntry源码,因此先说replaceStaleEntry方法,先回到set操作源码中。
private void set(ThreadLocal<?> key, Object value)
// We don't use a fast path as with get() because it is at
// least as common to use set() to create new entries as
// it is to replace existing ones, in which case, a fast
// path would fail more often than not.
Entry[] tab = table;
int len = tab.length;
int i = key.threadLocalHashCode & (len-1);
for (Entry e = tab[i];
e != null;
e = tab[i = nextIndex(i, len)])
ThreadLocal<?> k = e.get();
if (k == key)
e.value = value;
return;
if (k == null)
replaceStaleEntry(key, value, i);
return;
tab[i] = new Entry(key, value);
int sz = ++size;
if (!cleanSomeSlots(i, sz) && sz >= threshold)
rehash();
上述for循环插入新值的操作中,最后的if判断是当value存在值,但是key为null时进行的value替换操作,这就是在hash碰撞时,遇到脏key的操作,进入到方法replaceStaleEntry中。
/**
* Replace a stale entry encountered during a set operation
* with an entry for the specified key. The value passed in
* the value parameter is stored in the entry, whether or not
* an entry already exists for the specified key.
*
* As a side effect, this method expunges all stale entries in the
* "run" containing the stale entry. (A run is a sequence of entries
* between two null slots.)
*
* @param key the key
* @param value the value to be associated with key
* @param staleSlot index of the first stale entry encountered while
* searching for key.
*/
private void replaceStaleEntry(ThreadLocal<?> key, Object value,
int staleSlot)
Entry[] tab = table;
int len = tab.length;
Entry e;
// Back up to check for prior stale entry in current run.
// We clean out whole runs at a time to avoid continual
// incremental rehashing due to garbage collector freeing
// up refs in bunches (i.e., whenever the collector runs).
int slotToExpunge = staleSlot;
for (int i = prevIndex(staleSlot, len);
(e = tab[i]) != null;
i = prevIndex(i, len))
if (e.get() == null)
slotToExpunge = i;
// Find either the key or trailing null slot of run, whichever
// occurs first
for (int i = nextIndex(staleSlot, len);
(e = tab[i]) != null;
i = nextIndex(i, len))
ThreadLocal<?> k = e.get();
// If we find key, then we need to swap it
// with the stale entry to maintain hash table order.
// The newly stale slot, or any other stale slot
// encountered above it, can then be sent to expungeStaleEntry
// to remove or rehash all of the other entries in run.
if (k == key)
e.value = value;
tab[i] = tab[staleSlot];
tab[staleSlot] = e;
// Start expunge at preceding stale entry if it exists
if (slotToExpunge == staleSlot)
slotToExpunge = i;
cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
return;
// If we didn't find stale entry on backward scan, the
// first stale entry seen while scanning for key is the
// first still present in the run.
if (k == null && slotToExpunge == staleSlot)
slotToExpunge = i;
// If key not found, put new entry in stale slot
tab[staleSlot].value = null;
tab[staleSlot] = new Entry(key, value);
// If there are any other stale entries in run, expunge them
if (slotToExpunge != staleSlot)
cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
首先看第一个for循环方法。
int slotToExpunge = staleSlot;
for (int i = prevIndex(staleSlot, len);
(e = tab[i]) != null;
i = prevIndex(i, len))
if (e.get() == null)
slotToExpunge = i;
这个for循环上面有段注解,为:
// Back up to check for prior stale entry in current run.
// We clean out whole runs at a time to avoid continual
// incremental rehashing due to garbage collector freeing
// up refs in bunches (i.e., whenever the collector runs).
大致意思就是检查当前脏key的前后元素,这里认为脏key也是成聚集在一起的,如果检查到脏key,则前置slotToExpunge,最终检查至没有未遇到脏key为止。
同时,在下一段代码中,该for循环的操作,就是填充这些脏key了,可以看看源码。
// Find either the key or trailing null slot of run, whichever
// occurs first
for (int i = nextIndex(staleSlot, len);
(e = tab[i]) != null;
i = nextIndex(i, len))
ThreadLocal<?> k = e.get();
// If we find key, then we need to swap it
// with the stale entry to maintain hash table order.
// The newly stale slot, or any other stale slot
// encountered above it, can then be sent to expungeStaleEntry
// to remove or rehash all of the other entries in run.
if (k == key)
e.value = value;
tab[i] = tab[staleSlot];
tab[staleSlot] = e;
// Start expunge at preceding stale entry if it exists
if (slotToExpunge == staleSlot)
slotToExpunge = i;
cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
return;
这里做了一个事情,就是向后环形查找过程中发现key相同的entry就覆盖并且和脏entry进行交换。
if (slotToExpunge == staleSlot)
slotToExpunge = i;
cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
上述代码,如果没有查找到脏key,就以当前位置作为起点执行cleanSomeSlots方法。
expungeStaleEntry
在看cleanSomeSlots方法前先看expungeStaleEntry方法,这个方法就比较容易理解了,就是清除脏key。
/**
* Expunge a stale entry by rehashing any possibly colliding entries
* lying between staleSlot and the next null slot. This also expunges
* any other stale entries encountered before the trailing null. See
* Knuth, Section 6.4
*
* @param staleSlot index of slot known to have null key
* @return the index of the next null slot after staleSlot
* (all between staleSlot and this slot will have been checked
* for expunging).
*/
private int expungeStaleEntry(int staleSlot)
Entry[] tab = table;
int len = tab.length;
// expunge entry at staleSlot
tab[staleSlot].value = null;
tab[staleSlot] = null;
size--;
// Rehash until we encounter null
Entry e;
int i;
for (i = nextIndex(staleSlot, len);
(e = tab[i]) != null;
i = nextIndex(i, len))
ThreadLocal<?> k = e.get();
if (k == null)
e.value = null;
tab[i] = null;
size--;
else
int h = k.threadLocalHashCode & (len - 1);
if (h != i)
tab[i] = null;
// Unlike Knuth 6.4 Algorithm R, we must scan until
// null because multiple entries could have been stale.
while (tab[h] != null)
h = nextIndex(h, len);
tab[h] = e;
return i;
将当前节点key与value均置为null,便于当前位置放置新的entry,同时该方法还会做一个操作就是往后寻找直到tab[i]为null为止,如果在搜索过程中继续遇到脏key,则继续执行清除操作。
cleanSomeSlots
现在回头来看cleanSomeSlots方法。
/**
* Heuristically scan some cells looking for stale entries.
* This is invoked when either a new element is added, or
* another stale one has been expunged. It performs a
* logarithmic number of scans, as a balance between no
* scanning (fast but retains garbage) and a number of scans
* proportional to number of elements, that would find all
* garbage but would cause some insertions to take O(n) time.
*
* @param i a position known NOT to hold a stale entry. The
* scan starts at the element after i.
*
* @param n scan control: @code log2(n) cells are scanned,
* unless a stale entry is found, in which case
* @code log2(table.length)-1 additional cells are scanned.
* When called from insertions, this parameter is the number
* of elements, but when from replaceStaleEntry, it is the
* table length. (Note: all this could be changed to be either
* more or less aggressive by weighting n instead of just
* using straight log n. But this version is simple, fast, and
* seems to work well.)
*
* @return true if any stale entries have been removed.
*/
private boolean cleanSomeSlots(int i, int n)
boolean removed = false;
Entry[] tab = table;
int len = tab.length;
do
i = nextIndex(i, len);
Entry e = tab[i];
if (e != null && e.get() == null)
n = len;
removed = true;
i = expungeStaleEntry(i);
while ( (n >>>= 1) != 0);
return removed;
cleanSomeSlots操作就比较简单了,cleanSomeSlots中n这个参数就是当前tab的长度,然后while循环中进行n >>>= 1,就是一个log2(n),就行log2(n)次循环后,当前清理脏key就结束了。
综上
threadLocal这一套清理脏key还是挺复杂的,另外也和我们平常认识的有些不同,平常在用时一直以为此处没有脏key的处理操作,但现在知道前人对threadLocal还是做了许多优化,而且对以上脏key的处理操作中,并非是能将所有脏key都清理掉,而是在性能和脏key处理上做了一定的折中的选择,因此在自己平时使用时仍然要避免脏key的出现。
以上是关于ThreadLocal 详解的主要内容,如果未能解决你的问题,请参考以下文章
深入浅出多线程编程实战ThreadLocal详解(介绍使用原理应用场景)