怎么用Python写爬虫抓取网页数据

Posted AIData

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了怎么用Python写爬虫抓取网页数据相关的知识,希望对你有一定的参考价值。

机器学习首先面临的一个问题就是准备数据,数据的来源大概有这么几种:公司积累数据,购买,交换,政府机构及企业公开的数据,通过爬虫从网上抓取。本篇介绍怎么写一个爬虫从网上抓取公开的数据。

很多语言都可以写爬虫,但是不同语言的难易程度不同,Python作为一种解释型的胶水语言,上手简单、入门容易,标准库齐全,还有丰富的各种开源库,语言本身提供了很多提高开发效率的语法糖,开发效率高,总之“人生苦短,快用Python”(Life is short, you need Python!)。在Web网站开发,科学计算,数据挖掘/分析,人工智能等很多领域广泛使用。

开发环境配置,Python3.5.2,Scrapy1.2.1,使用pip安装scrapy,命令:pip3 install Scrapy,此命令在Mac下会自动安装Scrapy的依赖包,安装过程中如果出现网络超时,多试几次。

创建工程

首先创建一个Scrapy工程,工程名为:kiwi,命令:scrapy startproject kiwi,将创建一些文件夹和文件模板。

定义数据结构

settings.py是一些设置信息,items.py用来保存解析出来的数据,在此文件里定义一些数据结构,示例代码:

 1 # -*- coding: utf-8 -*-
 2 
 3 # Define here the models for your scraped items
 4 #
 5 # See documentation in:
 6 # http://doc.scrapy.org/en/latest/topics/items.html
 7 
 8 import scrapy
 9 
10 
11 class AuthorInfo(scrapy.Item):
12     authorName = scrapy.Field()  # 作者昵称
13     authorUrl = scrapy.Field()  # 作者Url
14 
15 class ReplyItem(scrapy.Item):
16     content = scrapy.Field()  # 回复内容
17     time = scrapy.Field()  # 发布时间
18     author = scrapy.Field() # 回复人(AuthorInfo)
19 
20 class TopicItem(scrapy.Item):
21     title = scrapy.Field() # 帖子标题
22     url = scrapy.Field() # 帖子页面Url
23     content = scrapy.Field() # 帖子内容
24     time = scrapy.Field()  # 发布时间
25     author = scrapy.Field() # 发帖人(AuthorInfo)
26     reply = scrapy.Field() # 回复列表(ReplyItem list)
27     replyCount = scrapy.Field() # 回复条数

上面TopicItem中嵌套了AuthorInfo和ReplyItem list,但是初始化类型必须是scrapy.Field(),注意这三个类都需要从scrapy.Item继续。

创建爬虫蜘蛛

工程目录spiders下的kiwi_spider.py文件是爬虫蜘蛛代码,爬虫代码写在这个文件里。示例以爬豆瓣群组里的帖子和回复为例。

  1 # -*- coding: utf-8 -*-
  2 from scrapy.selector import Selector
  3 from scrapy.spiders import CrawlSpider, Rule
  4 from scrapy.linkextractors import LinkExtractor
  5 
  6 from kiwi.items import TopicItem, AuthorInfo, ReplyItem
  7 class KiwiSpider(CrawlSpider):
  8     name = "kiwi"
  9     allowed_domains = ["douban.com"]
 10 
 11     anchorTitleXPath = \'a/text()\'
 12     anchorHrefXPath = \'a/@href\'
 13 
 14     start_urls = [
 15         "https://www.douban.com/group/topic/90895393/?start=0",
 16     ]
 17     rules = (
 18         Rule(
 19             LinkExtractor(allow=(r\'/group/[^/]+/discussion\\?start=\\d+\',)),
 20                 callback=\'parse_topic_list\',
 21                 follow=True
 22         ),
 23         Rule(
 24             LinkExtractor(allow=(r\'/group/topic/\\d+/$\',)),  # 帖子内容页面
 25                 callback=\'parse_topic_content\',
 26                 follow=True
 27         ),
 28         Rule(
 29             LinkExtractor(allow=(r\'/group/topic/\\d+/\\?start=\\d+\',)), # 帖子内容页面
 30                 callback=\'parse_topic_content\',
 31                 follow=True
 32         ),
 33     )
 34 
 35     # 帖子详情页面
 36     def parse_topic_content(self, response):
 37         # 标题XPath
 38         titleXPath = \'//html/head/title/text()\'
 39         # 帖子内容XPath
 40         contentXPath = \'//div[@class="topic-content"]/p/text()\'
 41         # 发帖时间XPath
 42         timeXPath = \'//div[@class="topic-doc"]/h3/span[@class="color-green"]/text()\'
 43         # 发帖人XPath
 44         authorXPath = \'//div[@class="topic-doc"]/h3/span[@class="from"]\'
 45 
 46         item = TopicItem()
 47         # 当前页面Url
 48         item[\'url\'] = response.url
 49         # 标题
 50         titleFragment = Selector(response).xpath(titleXPath)
 51         item[\'title\'] = str(titleFragment.extract()[0]).strip()
 52 
 53         # 帖子内容
 54         contentFragment = Selector(response).xpath(contentXPath)
 55         strs = [line.extract().strip() for line in contentFragment]
 56         item[\'content\'] = \'\\n\'.join(strs)
 57         # 发帖时间
 58         timeFragment = Selector(response).xpath(timeXPath)
 59         if timeFragment:
 60             item[\'time\'] = timeFragment[0].extract()
 61 
 62         # 发帖人信息
 63         authorInfo = AuthorInfo()
 64         authorFragment = Selector(response).xpath(authorXPath)
 65         if authorFragment:
 66             authorInfo[\'authorName\'] = authorFragment[0].xpath(self.anchorTitleXPath).extract()[0]
 67             authorInfo[\'authorUrl\'] = authorFragment[0].xpath(self.anchorHrefXPath).extract()[0]
 68 
 69         item[\'author\'] = dict(authorInfo)
 70 
 71         # 回复列表XPath
 72         replyRootXPath = r\'//div[@class="reply-doc content"]\'
 73         # 回复时间XPath
 74         replyTimeXPath = r\'div[@class="bg-img-green"]/h4/span[@class="pubtime"]/text()\'
 75         # 回复人XPath
 76         replyAuthorXPath = r\'div[@class="bg-img-green"]/h4\'
 77 
 78         replies = []
 79         itemsFragment = Selector(response).xpath(replyRootXPath)
 80         for replyItemXPath in itemsFragment:
 81             replyItem = ReplyItem()
 82             # 回复内容
 83             contents = replyItemXPath.xpath(\'p/text()\')
 84             strs = [line.extract().strip() for line in contents]
 85             replyItem[\'content\'] = \'\\n\'.join(strs)
 86             # 回复时间
 87             timeFragment = replyItemXPath.xpath(replyTimeXPath)
 88             if timeFragment:
 89                 replyItem[\'time\'] = timeFragment[0].extract()
 90             # 回复人
 91             replyAuthorInfo = AuthorInfo()
 92             authorFragment = replyItemXPath.xpath(replyAuthorXPath)
 93             if authorFragment:
 94                 replyAuthorInfo[\'authorName\'] = authorFragment[0].xpath(self.anchorTitleXPath).extract()[0]
 95                 replyAuthorInfo[\'authorUrl\'] = authorFragment[0].xpath(self.anchorHrefXPath).extract()[0]
 96 
 97             replyItem[\'author\'] = dict(replyAuthorInfo)
 98             # 添加进回复列表
 99             replies.append(dict(replyItem))
100 
101         item[\'reply\'] = replies
102         yield item
103 
104     # 帖子列表页面
105     def parse_topic_list(self, response):
106         # 帖子列表XPath(跳过表头行)
107         topicRootXPath = r\'//table[@class="olt"]/tr[position()>1]\'
108         # 单条帖子条目XPath
109         titleXPath = r\'td[@class="title"]\'
110         # 发帖人XPath
111         authorXPath = r\'td[2]\'
112         # 回复条数XPath
113         replyCountXPath = r\'td[3]/text()\'
114         # 发帖时间XPath
115         timeXPath = r\'td[@class="time"]/text()\'
116 
117         topicsPath = Selector(response).xpath(topicRootXPath)
118         for topicItemPath in topicsPath:
119             item = TopicItem()
120             titlePath = topicItemPath.xpath(titleXPath)
121             item[\'title\'] = titlePath.xpath(self.anchorTitleXPath).extract()[0]
122             item[\'url\'] = titlePath.xpath(self.anchorHrefXPath).extract()[0]
123             # 发帖时间
124             timePath = topicItemPath.xpath(timeXPath)
125             if timePath:
126                 item[\'time\'] = timePath[0].extract()
127                 # 发帖人
128                 authorPath = topicItemPath.xpath(authorXPath)
129                 authInfo = AuthorInfo()
130                 authInfo[\'authorName\'] = authorPath[0].xpath(self.anchorTitleXPath).extract()[0]
131                 authInfo[\'authorUrl\'] = authorPath[0].xpath(self.anchorHrefXPath).extract()[0]
132                 item[\'author\'] = dict(authInfo)
133                 # 回复条数
134                 replyCountPath = topicItemPath.xpath(replyCountXPath)
135                 item[\'replyCount\'] = replyCountPath[0].extract()
136 
137             item[\'content\'] = \'\'
138             yield item
139 
140     parse_start_url = parse_topic_content

 

特别注意

1、KiwiSpider需要改成从CrawlSpider类继承,模板生成的代码是从Spider继承的,那样的话不会去爬rules里的页面。

2、parse_start_url = parse_topic_list 是定义入口函数,从CrawlSpider类的代码里可以看到parse函数回调的是parse_start_url函数,子类可以重写这个函数,也可以像上面代码那样给它赋值一个新函数。

3、start_urls里是入口网址,可以添加多个网址。

4、rules里定义在抓取到的网页中哪些网址需要进去爬,规则和对应的回调函数,规则用正则表达式写。上面的示例代码,定义了继续抓取帖子详情首页及分页。

5、注意代码里用dict()包装的部分,items.py文件里定义数据结构的时候,author属性实际需要的是AuthorInfo类型,赋值的时候必须用dict包装起来,item[\'author\'] = authInfo 赋值会报Error。

6、提取内容的时候利用XPath取出需要的内容,有关XPath的资料参看:XPath教程 http://www.w3school.com.cn/xpath/。开发过程中可以利用浏览器提供的工具查看XPath,比如Firefox 浏览器中的FireBug、FirePath插件,对于https://www.douban.com/group/python/discussion?start=0这个页面,XPath规则“//td[@class="title"]”可以获取到帖子标题列表,示例:

上图红框中可以输入XPath规则,方便测试XPath的规则是否符合要求。新版Firefox可以安装 Try XPath 这个插件 查看XPath,Chrome浏览器可以安装 XPath Helper 插件。

使用随机UserAgent

为了让网站看来更像是正常的浏览器访问,可以写一个Middleware提供随机的User-Agent,在工程根目录下添加文件useragentmiddleware.py,示例代码:

 1 # -*-coding:utf-8-*-
 2 
 3 import random
 4 from scrapy.downloadermiddlewares.useragent import UserAgentMiddleware
 5 
 6 
 7 class RotateUserAgentMiddleware(UserAgentMiddleware):
 8     def __init__(self, user_agent=\'\'):
 9         self.user_agent = user_agent
10 
11     def process_request(self, request, spider):
12         ua = random.choice(self.user_agent_list)
13         if ua:
14             request.headers.setdefault(\'User-Agent\', ua)
15 
16     # for more user agent strings,you can find it in http://www.useragentstring.com/pages/useragentstring.php
17     user_agent_list = [ \\
18         "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/22.0.1207.1 Safari/537.1" \\
19         "Mozilla/5.0 (X11; CrOS i686 2268.111.0) AppleWebKit/536.11 (KHTML, like Gecko) Chrome/20.0.1132.57 Safari/536.11", \\
20         "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.6 (KHTML, like Gecko) Chrome/20.0.1092.0 Safari/536.6", \\
21         "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.6 (KHTML, like Gecko) Chrome/20.0.1090.0 Safari/536.6", \\
22         "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/19.77.34.5 Safari/537.1", \\
23         "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.9 Safari/536.5", \\
24         "Mozilla/5.0 (Windows NT 6.0) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.36 Safari/536.5", \\
25         "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3", \\
26         "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3", \\
27         "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_0) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3", \\
28         "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3", \\
29         "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3", \\
30         "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3", \\
31         "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3", \\
32         "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3", \\
33         "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.0 Safari/536.3", \\
34         "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/535.24 (KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24", \\
35         "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/535.24 (KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24"
36     ]

 

修改settings.py,添加下面的设置,

DOWNLOADER_MIDDLEWARES = {
   \'kiwi.useragentmiddleware.RotateUserAgentMiddleware\': 1,
}

同时禁用cookie,COOKIES_ENABLED = False。

运行爬虫

切换到工程根目录,输入命令:scrapy crawl kiwi,console窗口可以看到打印出来的数据,或者使用命令“scrapy crawl kiwi -o result.json -t json”将结果保存到文件里。

 

怎么抓取用JS代码动态输出的网页数据

上面的例子对由执行js代码输出数据的页面不适用,好在Python的工具库多,可以安装phantomjs这个工具,从官网下载解压即可。下面以抓取 http://www.kjj.com/index_kfjj.html 这个网页的基金净值数据为例,这个页面的数据是由js代码动态输出的,js代码执行之后才会输出基金净值列表。fund_spider.py代码

 1 # -*- coding: utf-8 -*-
 2 from scrapy.selector import Selector
 3 from datetime import  datetime
 4 from selenium import webdriver
 5 from fundequity import FundEquity
 6 
 7 class PageSpider(object):
 8     def __init__(self):
 9         phantomjsPath = "/Library/Frameworks/Python.framework/Versions/3.5/phantomjs/bin/phantomjs"
10         cap = webdriver.DesiredCapabilities.PHANTOMJS
11         cap["phantomjs.page.settings.resourceTimeout"] = 1000
12         cap["phantomjs.page.settings.loadImages"] = False
13         cap["phantomjs.page.settings.disk-cache"] = False
14         self.driver = webdriver.PhantomJS(executable_path=phantomjsPath, desired_capabilities=cap)
15 
16     def fetchPage(self, url):
17         self.driver.get(url)
18         html = self.driver.page_source
19         return html
20 
21     def parse(self, html):
22         fundListXPath = r\'//div[@id="maininfo_all"]/table[@id="ilist"]/tbody/tr[position()>1]\'
23         itemsFragment = Selector(text=html).xpath(fundListXPath)
24         for itemXPath in itemsFragment:
25             attrXPath = itemXPath.xpath(r\'td[1]/text()\')
26             text = attrXPath[0].extract().strip()
27             if text != "-":
28                 fe = FundEquity()
29                 fe.serial = text
30 
31                 attrXPath = itemXPath.xpath(r\'td[2]/text()\')
32                 text = attrXPath[0].extract().strip()
33                 fe.date = datetime.strptime(text, "%Y-%m-%d")
34 
35                 attrXPath = itemXPath.xpath(r\'td[3]/text()\')
36                 text = attrXPath[0].extract().strip()
37                 fe.code = text
38 
39                 attrXPath = itemXPath.xpath(r\'td[4]/a/text()\')
40                 text = attrXPath[0].extract().strip()
41                 fe.name = text
42 
43                 attrXPath = itemXPath.xpath(r\'td[5]/text()\')
44                 text = attrXPath[0].extract().strip()
45                 fe.equity = text
46 
47                 attrXPath = itemXPath.xpath(r\'td[6]/text()\')
48                 text = attrXPath[0].extract().strip()
49                 fe.accumulationEquity = text
50 
51                 attrXPath = itemXPath.xpath(r\'td[7]/font/text()\')
52                 text = attrXPath[0].extract().strip()
53                 fe.increment = text
54 
55                 attrXPath = itemXPath.xpath(r\'td[8]/font/text()\')
56                 text = attrXPath[0].extract().strip().strip(\'%\')
57                 fe.growthRate = text
58 
59                 attrXPath = itemXPath.xpath(r\'td[9]/a/text()\')
60                 if len(attrXPath) > 0:
61                     text = attrXPath[0].extract().strip()
62                     if text == "购买":
63                         fe.canBuy = True
64                     else:
65                         fe.canBuy = False
66 
67                 attrXPath = itemXPath.xpath(r\'td[10]/font/text()\')
68                 if len(attrXPath) > 0:
69                     text = attrXPath[0].extract().strip()
70                     if text == "赎回":
71                         fe.canRedeem = True
72                     else:
73                         fe.canRedeem = False
74 
75                 yield fe
76 
77     def __del__(self):
78         self.driver.quit()
79 
80 def test():
81     spider = PageSpider()
82     html = spider.fetchPage("http://www.kjj.com/index_kfjj.html")
83     for item in spider.parse(html):
84         print(item)
85     del spider
86 
87 if __name__ == "__main__":
88     test()

1
# -*- coding: utf-8 -*- 2 from datetime import date 3 4 # 基金净值信息 5 class FundEquity(object): 6 def __init__(self): 7 # 类实例即对象的属性 8 self.__serial = 0 # 序号 9 self.__date = None # 日期 10 self.__code = "" # 基金代码 11 self.__name = "" # 基金名称 12 self.__equity = 0.0 # 单位净值 13 self.__accumulationEquity = 0.0 # 累计净值 14 self.__increment = 0.0 # 增长值 15 self.__growthRate = 0.0 # 增长率 16 self.__canBuy = False # 是否可以购买 17 self.__canRedeem = True # 是否能赎回 18 19 @property 20 def serial(self): 21 return self.__serial以上是关于怎么用Python写爬虫抓取网页数据的主要内容,如果未能解决你的问题,请参考以下文章

python怎么抓取网页中DIV的文字

python爬虫怎么获取动态的网页源码

如何用python 爬虫抓取金融数据

Python爬虫怎么抓取html网页的代码块

python怎么自动抓取网页上每日天气预报

我想用python抓取网页里的图片,地址,商铺名,电话号码,怎么写代码