Python之路(十八):进程,线程,协程

Posted __Miracle

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python之路(十八):进程,线程,协程相关的知识,希望对你有一定的参考价值。

python基础之进程、线程、协程

 

引子

  进程

  线程(优先阅读)

  协程

进程

概念:就是一个程序在一个数据集上的一次动态执行过程(本质上来讲,就是运行中的程序(代指运行过程),程序不运行就不是进程)    抽象概念

组成:

   1、程序:我们编写的程序用来描述进程要完成哪些功能以及如何完成

   2、数据集:数据集则是程序在执行过程中所需要使用的资源

   3、进程控制块:进程控制块用来记录进程的外部特征,描述进程的执行变化过程,系统可以利用它来控制和管理进程,它是系统感知进程存在的唯一标志。

阐释:进程与进程之间都占用的是独立的内存块,它们彼此之间的数据也是独立的

优点:同时利用多个CPU,能够同时进行多个操作

缺点:耗费资源(需要重新开辟内存空间)

构造方法:

Process([group [, target [, name [, args [, kwargs]]]]])

  group: 线程组,目前还没有实现,库引用中提示必须是None; 
  target: 要执行的方法; 
  name: 进程名; 
  args/kwargs: 要传入方法的参数。

实例方法:

  is_alive():返回进程是否在运行。

  join([timeout]):阻塞当前上下文环境的进程程,直到调用此方法的进程终止或到达指定的timeout(可选参数)。

  start():进程准备就绪,等待CPU调度

  run():strat()调用run方法,如果实例进程时未制定传入target,这star执行t默认run()方法。

  terminate():不管任务是否完成,立即停止工作进程

属性:

  daemon:和线程的setDeamon功能一样

  name:进程名字。

  pid:进程号。

创建进程的方式有俩种

一,通过调用模块的方式来创建线程

复制代码
# 进程模块
import multiprocessing
import time

def f1():
    start = time.time()
    sum = 0
    for n in range(100000000):
        sum += n
    print(sum)
    print("data:{}".format(time.time() - start))
if __name__ == \'__main__\':   # windows在调用进程的时候,必须加这句话,否则会报错
    li = []
    p1 = multiprocessing.Process(target=f1)
    li.append(p1)
    p2 = multiprocessing.Process(target=f1)
    li.append(p2)
    for p in li:
        p.start()
    for i in li:
        i.join()

    print("ending...")
复制代码

二,通过继承类的方式(推荐)

复制代码
import multiprocessing


class Process(multiprocessing.Process):
    def run(self):
        sum = 0
        for n in range(100000000):
            sum += n
        print(sum)

li = []
for i in range(2):
    p = Process()
    li.append(p)

if __name__ == \'__main__\':
    for p in li:
        p.start()

    for i in li:
        i.join()

    print("ending")
复制代码

进程之间的通信

创建进程模块的下队列(Queue)

复制代码
# 进程之间的通信   Queue
from multiprocessing import Queue, Process, Pipe
import os,time,random


def write(q):
    print("process to write{}".format(os.getpid()))
    for value in ["A","B","C"]:
        print("Put {} to queue...".format(value))
        q.put(value)
        time.sleep(random.random())


def read(q):
    print("process to read{}".format(os.getpid()))
    while True:
        value = q.get(True)
        print("Get {} from queue".format(value))

if __name__ == \'__main__\':
    q = Queue()
    pw = Process(target=write,args=(q,))  # 这里传输的q是copy的
    pr = Process(target=read,args=(q,))
    pw.start()
    pr.start()

    pw.join()
    pr.terminate()  # 强行终止进程(因为这个子进程定义了一个死循环)
复制代码

管道(Pipe)

复制代码
# 进程之间的通信   Pipe(类似于socket)
from multiprocessing import Queue, Process, Pipe
import os,time,random

# 说明Pipe的send是没有返回值的
pipe = Pipe()
# print(pipe)

def worker(pipe):
    time.sleep(random.random())
    for i in range(10):
        print("worker send {}".format(pipe.send(i)))


def Boss(pipe):
    while True:
        print("Boss recv {}".format(pipe.recv()))

p1 = Process(target=worker,args=(pipe[0],))
p2 = Process(target=Boss,args=(pipe[1],))
if __name__ == \'__main__\':

    p1.start()
    p2.start()
复制代码

上述实现了进程间的数据通信,那么进程可以达到数据共享么?Sure。

前一节中, Pipe、Queue 都有一定数据共享的功能,但是他们会堵塞进程, 这里介绍的两种数据共享方式都不会堵塞进程, 而且都是多进程安全的。

A manager object returned by Manager() controls a server process which holds Python objects and allows other processes to manipulate them using proxies.

A manager returned by Manager() will support types listdictNamespaceLockRLockSemaphoreBoundedSemaphoreConditionEventBarrierQueueValue and Array.

由上述英文我们了解到,通过Manager()可以实现进程上的数据共享,并且支持的类型也由很多,接下来看代码

from multiprocessing import Process, Manager


def f(d,l,n):
    d["name"] = "alex"
    d[n] = "1"
    l.append(n)

if __name__ == \'__main__\':
    with Manager() as manager:  # 类似于文件操作的with open(...)
        d = manager.dict()
        l = manager.list(range(5))
        print(d,l)

        p_list = []
        for n in range(10):
            p = Process(target=f,args=(d, l, n))
            p.start()
            p_list.append(p)

        for p in p_list:   
            p.join()           # 这儿的join必须加

        print(d)
        print(l)

# 关于数据共享的进程等待的问题,鄙人作出一些自己的理解
# 多核CPU的情况下,进程间是可以实现并行的,当然每个核处理的速度又有极其细微的差异性,速度处理稍慢些的进程在还在对数据进行处理的候,同时又想要得到数据了,自然会出现错误,所以要等待进程处理完这份数据的时候再进行操作

 

from multiprocessing import Process, Manager

def func(n,a):
    n.value = 50
    for i in range(len(a)):
        a[i] += 10


if __name__ == \'__main__\':
    with Manager() as manager:
        num = manager.Value("d", 0.0)
        ints = manager.Array("i", range(10))
        p = Process(target=func,args=(num,ints))
        p.start()
        p.join()

        print(num)
        print(ints)

输出
Value(\'d\', 50)
array(\'i\', [10, 11, 12, 13, 14, 15, 16, 17, 18, 19])

# 共享内存有两个结构,一个是 Value, 一个是 Array,这两个结构内部都实现了锁机制,因此是多进程安全的。
# Value 和 Array 都需要设置其中存放值的类型,d 是 double 类型,i 是 int 类型,具体的对应关系在Python 标准库的 sharedctypes 模块中查看。
# 上面的共享内存支持两种结构 Value 和 Array, 这些值在主进程中管理,很分散。 Python 中还有一统天下,无所不能的Manager,专门用来做数据共享。 其支持的类型非常多。

  

进程同步

Lock

锁是为了确保数据一致性,比如读写锁,每个进程给一个变量增加 1 ,但是如果在一个进程读取但还没有写入的时候,另外的进程也同时读取了,并写入该值,则最后写入的值是错误的,这时候就需要锁。

复制代码
# 为什么引申进程同步
# 数据的一致性
import time
from multiprocessing import Lock, Process


def run(i, lock):
    with lock:  # 自动获得锁和释放锁
        time.sleep(1)
        print(i)


if __name__ == \'__main__\':

    lock = Lock()

    for i in range(10):
        p = Process(target=run,args=(i,lock,))
        p.start()
复制代码

Lock 同时也实现了 ContextManager API, 可以结合 with 语句使用, 关于 ContextManager, 请移步 Python 学习实践笔记 装饰器 与 context 查看。

Semaphore

Semaphore 和 Lock 稍有不同,Semaphore 相当于 N 把锁,获取其中一把就可以执行了。 信号量的总数 N 在构造时传入,s = Semaphore(N)。 和 Lock 一样,如果信号量为0,则进程堵塞,直到信号大于0。

进程池

如果有50个任务要去执行,CPU只有4核,那创建50个进程完成,其实大可不必,徒增管理开销。如果只想创建4个进程,让它们轮流替完成任务,不用自己去管理具体的进程的创建销毁,那 Pool 是非常有用的。

Pool 是进程池,进程池能够管理一定的进程,当有空闲进程时,则利用空闲进程完成任务,直到所有任务完成为止

1
2
3
4
5
6
7
8

(c)2006-2024 SYSTEM All Rights Reserved IT常识