fisher判别方法的主要特点是

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了fisher判别方法的主要特点是相关的知识,希望对你有一定的参考价值。

参考技术A

fisher判别方法的主要特点是先对数据进行投影然后再利用距离进行判别。


Fisher判别法是判别分析的方法之一,它是借助于方差分析的思想,利用已知各总体抽取的样品的p维观察值构造一个或多个线性判别函数y=l′x其中l= (l1,l2…lp)′,x= (x1,x2,…,xp)′,使不同总体之间的离差(记为B)尽可能地大,而同一总体内的离差(记为E)尽可能地小来确定判别系数l=(l1,l2…lp)′。数学上证明判别系数l恰好是|B-λE|=0的特征根,记为λ1≥λ2≥…≥λr>0。所对应的特征向量记为l1,l2,…lr,则可写出多个相应的线性判别函数,在有些问题中,仅用一个λ1对应的特征向量l1所构成线性判别函数y1=l′1x不能很好区分各个总体时,可取λ2对应的特征向量l′2建立第二个线性判别函数y2=l′2x,如还不够,依此类推。有了判别函数,再人为规定一个分类原则(有加权法和不加权法等)就可对新样品x判别所属。


以上是关于fisher判别方法的主要特点是的主要内容,如果未能解决你的问题,请参考以下文章

判别分析(Fisher判别方法)

Fisher Vector Encoding and Gaussian Mixture Model

Fisher线性判别

Fisher vector

线性判别方法

Fisher线性判别