Python 中的进程与 锁
Posted heshun
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python 中的进程与 锁相关的知识,希望对你有一定的参考价值。
理论知识
操作系统背景知识
顾名思义,进程即正在执行的一个过程。进程是对正在运行程序的一个抽象。
进程的概念起源于操作系统,是操作系统最核心的概念,也是操作系统提供的最古老也是最重要的抽象概念之一。操作系统的其他所有内容都是围绕进程的概念展开的。
所以想要真正了解进程,必须事先了解操作系统,点击进入
PS:即使可以利用的cpu只有一个(早期的计算机确实如此),也能保证支持(伪)并发的能力。将一个单独的cpu变成多个虚拟的cpu(多道技术:时间多路复用和空间多路复用+硬件上支持隔离),没有进程的抽象,现代计算机将不复存在。
必备的理论基础:
#一 操作系统的作用: 1:隐藏丑陋复杂的硬件接口,提供良好的抽象接口 2:管理、调度进程,并且将多个进程对硬件的竞争变得有序 #二 多道技术: 1.产生背景:针对单核,实现并发 ps: 现在的主机一般是多核,那么每个核都会利用多道技术 有4个cpu,运行于cpu1的某个程序遇到io阻塞,会等到io结束再重新调度,会被调度到4个 cpu中的任意一个,具体由操作系统调度算法决定。 2.空间上的复用:如内存中同时有多道程序 3.时间上的复用:复用一个cpu的时间片 强调:遇到io切,占用cpu时间过长也切,核心在于切之前将进程的状态保存下来,这样 才能保证下次切换回来时,能基于上次切走的位置继续运行
什么是进程
进程(Process)是计算机中的程序关于某数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,是操作系统结构的基础。在早期面向进程设计的计算机结构中,进程是程序的基本执行实体;在当代面向线程设计的计算机结构中,进程是线程的容器。程序是指令、数据及其组织形式的描述,进程是程序的实体。
第一,进程是一个实体。每一个进程都有它自己的地址空间,一般情况下,包括文本区域(text region)、数据区域(data region)和堆栈(stack region)。文本区域存储处理器执行的代码;数据区域存储变量和进程执行期间使用的动态分配的内存;堆栈区域存储着活动过程调用的指令和本地变量。 第二,进程是一个“执行中的程序”。程序是一个没有生命的实体,只有处理器赋予程序生命时(操作系统执行之),它才能成为一个活动的实体,我们称其为进程。[3] 进程是操作系统中最基本、重要的概念。是多道程序系统出现后,为了刻画系统内部出现的动态情况,描述系统内部各道程序的活动规律引进的一个概念,所有多道程序设计操作系统都建立在进程的基础上。
从理论角度看,是对正在运行的程序过程的抽象;
从实现角度看,是一种数据结构,目的在于清晰地刻画动态系统的内在规律,有效管理和调度进入计算机系统主存储器运行的程序。
动态性:进程的实质是程序在多道程序系统中的一次执行过程,进程是动态产生,动态消亡的。
并发性:任何进程都可以同其他进程一起并发执行
独立性:进程是一个能独立运行的基本单位,同时也是系统分配资源和调度的独立单位;
异步性:由于进程间的相互制约,使进程具有执行的间断性,即进程按各自独立的、不可预知的速度向前推进
结构特征:进程由程序、数据和进程控制块三部分组成。
多个不同的进程可以包含相同的程序:一个程序在不同的数据集里就构成不同的进程,能得到不同的结果;但是执行过程中,程序不能发生改变。
程序是指令和数据的有序集合,其本身没有任何运行的含义,是一个静态的概念。
而进程是程序在处理机上的一次执行过程,它是一个动态的概念。
程序可以作为一种软件资料长期存在,而进程是有一定生命期的。
程序是永久的,进程是暂时的。
注意:同一个程序执行两次,就会在操作系统中出现两个进程,所以我们可以同时运行一个软件,分别做不同的事情也不会混乱。
进程的并行与并发
并行 : 并行是指两者同时执行,比如赛跑,两个人都在不停的往前跑;(资源够用,比如三个线程,四核的CPU )
并发 : 并发是指资源有限的情况下,两者交替轮流使用资源,比如一段路(单核CPU资源)同时只能过一个人,A走一段后,让给B,B用完继续给A ,交替使用,目的是提高效率。
区别:
并行是从微观上,也就是在一个精确的时间片刻,有不同的程序在执行,这就要求必须有多个处理器。
并发是从宏观上,在一个时间段上可以看出是同时执行的,比如一个服务器同时处理多个session。
同步异步阻塞非阻塞
状态介绍
在了解其他概念之前,我们首先要了解进程的几个状态。在程序运行的过程中,由于被操作系统的调度算法控制,程序会进入几个状态:就绪,运行和阻塞。
(1)就绪(Ready)状态
当进程已分配到除CPU以外的所有必要的资源,只要获得处理机便可立即执行,这时的进程状态称为就绪状态。
(2)执行/运行(Running)状态当进程已获得处理机,其程序正在处理机上执行,此时的进程状态称为执行状态。
(3)阻塞(Blocked)状态正在执行的进程,由于等待某个事件发生而无法执行时,便放弃处理机而处于阻塞状态。引起进程阻塞的事件可有多种,例如,等待I/O完成、申请缓冲区不能满足、等待信件(信号)等。
同步和异步
所谓同步就是一个任务的完成需要依赖另外一个任务时,只有等待被依赖的任务完成后,依赖的任务才能算完成,这是一种可靠的任务序列
。要么成功都成功,失败都失败,两个任务的状态可以保持一致。
所谓异步是不需要等待被依赖的任务完成,只是通知被依赖的任务要完成什么工作,依赖的任务也立即执行,只要自己完成了整个任务就算完成了
。至于被依赖的任务最终是否真正完成,依赖它的任务无法确定,所以它是不可靠的任务序列
。
比如我去银行办理业务,可能会有两种方式:
第一种 :选择排队等候;
第二种 :选择取一个小纸条上面有我的号码,等到排到我这一号时由柜台的人通知我轮到我去办理业务了;
第一种:前者(排队等候)就是同步等待消息通知,也就是我要一直在等待银行办理业务情况;
第二种:后者(等待别人通知)就是异步等待消息通知。在异步消息处理中,等待消息通知者(在这个例子中就是等待办理业务的人)往往注册一个回调机制,在所等待的事件被触发时由触发机制(在这里是柜台的人)通过某种机制(在这里是写在小纸条上的号码,喊号)找到等待该事件的人。
同步/异步与阻塞/非阻塞
- 同步阻塞形式
效率最低。拿上面的例子来说,就是你专心排队,什么别的事都不做。
- 异步阻塞形式
如果在银行等待办理业务的人采用的是异步的方式去等待消息被触发(通知)
,也就是领了一张小纸条,假如在这段时间里他不能离开银行做其它的事情,那么很显然,这个人被阻塞在了这个等待的操作上面;
异步操作是可以被阻塞住的,只不过它不是在处理消息时阻塞,而是在等待消息通知时被阻塞。
- 同步非阻塞形式
实际上是效率低下的。
想象一下你一边打着电话一边还需要抬头看到底队伍排到你了没有,如果把打电话和观察排队的位置看成是程序的两个操作的话,这个程序需要在这两种不同的行为之间来回的切换
,效率可想而知是低下的。
- 异步非阻塞形式
效率更高,
因为打电话是你(等待者)的事情,而通知你则是柜台(消息触发机制)的事情,程序没有在两种不同的操作中来回切换
。
比如说,这个人突然发觉自己烟瘾犯了,需要出去抽根烟,于是他告诉大堂经理说,排到我这个号码的时候麻烦到外面通知我一下,那么他就没有被阻塞在这个等待的操作上面,自然这个就是异步+非阻塞的方式了。
很多人会把同步和阻塞混淆,是因为很多时候同步操作会以阻塞的形式表现出来
,同样的,很多人也会把异步和非阻塞混淆,因为异步操作一般都不会在真正的IO操作处被阻塞
。
进程的创建与结束
进程的创建
但凡是硬件,都需要有操作系统去管理,只要有操作系统,就有进程的概念,就需要有创建进程的方式,一些操作系统只为一个应用程序设计,比如微波炉中的控制器,一旦启动微波炉,所有的进程都已经存在。
而对于通用系统(跑很多应用程序),需要有系统运行过程中创建或撤销进程的能力,主要分为4中形式创建新的进程:
1. 系统初始化(查看进程linux中用ps命令,windows中用任务管理器,前台进程负责与用户交互,后台运行的进程与用户无关,运行在后台并且只在需要时才唤醒的进程,称为守护进程,如电子邮件、web页面、新闻、打印)
2. 一个进程在运行过程中开启了子进程(如nginx开启多进程,os.fork,subprocess.Popen等)
3. 用户的交互式请求,而创建一个新进程(如用户双击暴风影音)
4. 一个批处理作业的初始化(只在大型机的批处理系统中应用)
无论哪一种,新进程的创建都是由一个已经存在的进程执行了一个用于创建进程的系统调用而创建的。
1. 在UNIX中该系统调用是:fork,fork会创建一个与父进程一模一样的副本,二者有相同的存储映像、同样的环境字符串和同样的打开文件(在shell解释器进程中,执行一个命令就会创建一个子进程) 2. 在windows中该系统调用是:CreateProcess,CreateProcess既处理进程的创建,也负责把正确的程序装入新进程。 关于创建子进程,UNIX和windows 1.相同的是:进程创建后,父进程和子进程有各自不同的地址空间(多道技术要求物理层面实现进程之间内存的隔离),任何一个进程的在其地址空间中的修改都不会影响到另外一个进程。 2.不同的是:在UNIX中,子进程的初始地址空间是父进程的一个副本,提示:子进程和父进程是可以有只读的共享内存区的。但是对于windows系统来说,从一开始父进程与子进程的地址空间就是不同的。
进程的结束
1. 正常退出(自愿,如用户点击交互式页面的叉号,或程序执行完毕调用发起系统调用正常退出,在linux中用exit,在windows中用ExitProcess)
2. 出错退出(自愿,python a.py中a.py不存在)
3. 严重错误(非自愿,执行非法指令,如引用不存在的内存,1/0等,可以捕捉异常,try...except...)
4. 被其他进程杀死(非自愿,如kill -9)
在python程序中的进程操作
之前我们已经了解了很多进程相关的理论知识,了解进程是什么应该不再困难了,刚刚我们已经了解了,运行中的程序就是一个进程。所有的进程都是通过它的父进程来创建的。因此,运行起来的python程序也是一个进程,那么我们也可以在程序中再创建进程。多个进程可以实现并发效果,也就是说,当我们的程序中存在多个进程的时候,在某些时候,就会让程序的执行速度变快。以我们之前所学的知识,并不能实现创建进程这个功能,所以我们就需要借助python中强大的模块。
multiprocess模块
仔细说来,multiprocess不是一个模块而是python中一个操作、管理进程的包。 之所以叫multi是取自multiple的多功能的意思,在这个包中几乎包含了和进程有关的所有子模块。由于提供的子模块非常多,为了方便大家归类记忆,我将这部分大致分为四个部分:创建进程部分,进程同步部分,进程池部分,进程之间数据共享。
multiprocess.process模块
process模块介绍
Process([group [, target [, name [, args [, kwargs]]]]]),由该类实例化得到的对象,表示一个子进程中的任务(尚未启动) 强调: 1. 需要使用关键字的方式来指定参数 2. args指定的为传给target函数的位置参数,是一个元组形式,必须有逗号 参数介绍: 1 group参数未使用,值始终为None 2 target表示调用对象,即子进程要执行的任务 3 args表示调用对象的位置参数元组,args=(1,2,\'egon\',) 4 kwargs表示调用对象的字典,kwargs={\'name\':\'egon\',\'age\':18} 5 name为子进程的名称
1 p.start():启动进程,并调用该子进程中的p.run() 2 p.run():进程启动时运行的方法,正是它去调用target指定的函数,我们自定义类的类中一定要实现该方法 3 p.terminate():强制终止进程p,不会进行任何清理操作,如果p创建了子进程,该子进程就成了僵尸进程,使用该方法需要特别小心这种情况。如果p还保存了一个锁那么也将不会被释放,进而导致死锁 4 p.is_alive():如果p仍然运行,返回True 5 p.join([timeout]):主线程等待p终止(强调:是主线程处于等的状态,而p是处于运行的状态)。timeout是可选的超时时间,需要强调的是,p.join只能join住start开启的进程,而不能join住run开启的进程
1 p.daemon:默认值为False,如果设为True,代表p为后台运行的守护进程,当p的父进程终止时,p也随之终止,并且设定为True后,p不能创建自己的新进程,必须在p.start()之前设置 2 p.name:进程的名称 3 p.pid:进程的pid 4 p.exitcode:进程在运行时为None、如果为–N,表示被信号N结束 5 p.authkey:进程的身份验证键,默认是由os.urandom()随机生成的32字符的字符串。这个键的用途是为涉及网络连接的底层进程间通信提供安全性,这类连接只有在具有相同的身份验证键时才能成功
在Windows操作系统中由于没有fork(linux操作系统中创建进程的机制),在创建子进程的时候会自动 import 启动它的这个文件,而在 import 的时候又执行了整个文件。因此如果将process()直接写在文件中就会无限递归创建子进程报错。所以必须把创建子进程的部分使用if __name__ ==‘__main__’ 判断保护起来,import 的时候 ,就不会递归运行了。
Process实例对象的方法 # isAlive(): 返回进程是否活动的。 # getName(): 返回进程名。 # setName(): 设置进程名。 # join() : 无参数: 等待子进程执行完 ,再继续执行主函数, # 有参数 : 参数表示等待多久 , 到时间就不等了 继续执行子函数 # 同时主进程执行完 继续执行子函数 # Daemon = False # True 主进程执行完不管子进程是否执行完,程序终止 # False 主进程执行完 ,等待子进程执行完, 程序终止 multiprocessing模块提供的一些方法: # multiprocessing.current_Thread(): 返回当前的进程变量。或 获取当前执行该函数的进程对象 # multiprocessing.enumerate(): 返回一个包含正在运行的进程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的进程。 # multiprocessing.activeCount(): 返回正在运行的进程数量,与len(multiprocessing.enumerate())有相同的结果。
使用process模块创建进程
在一个python进程中开启子进程,start方法和并发效果。
import time from multiprocessing import Process def func(args): print("你好!",args) print("子进程") if __name__ == \'__main__\': p = Process(target=func,args=("和顺",)) p.start() time.sleep(2) print("主线程")
import time from multiprocessing import Process def f(name): print(\'hello\', name) time.sleep(1) print(\'我是子进程\') if __name__ == \'__main__\': p = Process(target=f, args=(\'bob\',)) p.start() #p.join() print(\'我是父进程\')
import os from multiprocessing import Process def f(x): print(\'子进程id :\',os.getpid(),\'父进程id :\',os.getppid()) return x*x if __name__ == \'__main__\': print(\'主进程id :\', os.getpid()) p_lst = [] for i in range(5): p = Process(target=f, args=(i,)) p.start()
进阶,多个进程同时运行(注意,子进程的执行顺序不是根据启动顺序决定的)
import time from multiprocessing import Process def f(name): print(\'hello\', name) time.sleep(1) if __name__ == \'__main__\': p_lst = [] for i in range(5): p = Process(target=f, args=(\'bob\',)) p.start() p_lst.append(p)
import time from multiprocessing import Process def f(name): print(\'hello\', name) time.sleep(1) if __name__ == \'__main__\': p_lst = [] for i in range(5): p = Process(target=f, args=(\'bob\',)) p.start() p_lst.append(p) p.join() # [p.join() for p in p_lst] print(\'父进程在执行\')
import time from multiprocessing import Process def f(name): print(\'hello\', name) time.sleep(1) if __name__ == \'__main__\': p_lst = [] for i in range(5): p = Process(target=f, args=(\'bob\',)) p.start() p_lst.append(p) # [p.join() for p in p_lst] print(\'父进程在执行\')
除了上面这些开启进程的方法,还有一种以继承Process类的形式开启进程的方式
import os from multiprocessing import Process class MyProcess(Process): def __init__(self,name): super().__init__() self.name=name def run(self): print(os.getpid()) print(\'%s 正在和女主播聊天\' %self.name) p1=MyProcess(\'wupeiqi\') p2=MyProcess(\'yuanhao\') p3=MyProcess(\'nezha\') p1.start() #start会自动调用run p2.start() # p2.run() p3.start() p1.join() p2.join() p3.join() print(\'主线程\')
进程之间的数据隔离问题
from multiprocessing import Process def work(): global n n=0 print(\'子进程内: \',n) if __name__ == \'__main__\': n = 100 p=Process(target=work) p.start() print(\'主进程内: \',n)
守护进程
会随着主进程的结束而结束。
主进程创建守护进程
其一:守护进程会在主进程代码执行结束后就终止
其二:守护进程内无法再开启子进程,否则抛出异常:AssertionError: daemonic processes are not allowed to have children
注意:进程之间是互相独立的,主进程代码运行结束,守护进程随即终止
import os import time from multiprocessing import Process class Myprocess(Process): def __init__(self,person): super().__init__() self.person = person def run(self): print(os.getpid(),self.name) print(\'%s正在和女主播聊天\' %self.person) p=Myprocess(\'哪吒\') p.daemon=True #一定要在p.start()前设置,设置p为守护进程,禁止p创建子进程,并且父进程代码执行结束,p即终止运行 p.start() time.sleep(10) # 在sleep时查看进程id对应的进程ps -ef|grep id print(\'主\')
from multiprocessing import Process def foo(): print(123) time.sleep(1) print("end123") def bar(): print(456) time.sleep(3) print("end456") p1=Process(target=foo) p2=Process(target=bar) p1.daemon=True p1.start() p2.start() time.sleep(0.1) print("main-------")#打印该行则主进程代码结束,则守护进程p1应该被终止.#可能会有p1任务执行的打印信息123,因为主进程打印main----时,p1也执行了,但是随即被终止.
socket聊天并发实例
from socket import * from multiprocessing import Process server=socket(AF_INET,SOCK_STREAM) server.setsockopt(SOL_SOCKET,SO_REUSEADDR,1) server.bind((\'127.0.0.1\',8080)) server.listen(5) def talk(conn,client_addr): while True: try: msg=conn.recv(1024) if not msg:break conn.send(msg.upper()) except Exception: break if __name__ == \'__main__\': #windows下start进程一定要写到这下面 while True: conn,client_addr=server.accept() p=Process(target=talk,args=(conn,client_addr)) p.start()
from socket import * client=socket(AF_INET,SOCK_STREAM) client.connect((\'127.0.0.1\',8080)) while True: msg=input(\'>>: \').strip() if not msg:continue client.send(msg.encode(\'utf-8\')) msg=client.recv(1024) print(msg.decode(\'utf-8\'))
多进程中的其他方法
from multiprocessing import Process import time import random class Myprocess(Process): def __init__(self,person): self.name=person super().__init__() def run(self): print(\'%s正在和网红脸聊天\' %self.name) time.sleep(random.randrange(1,5)) print(\'%s还在和网红脸聊天\' %self.name) p1=Myprocess(\'哪吒\') p1.start() p1.terminate()#关闭进程,不会立即关闭,所以is_alive立刻查看的结果可能还是存活 print(p1.is_alive()) #结果为True print(\'开始\') print(p1.is_alive()) #结果为False
class Myprocess(Process): 2 def __init__(self,person): 3 self.name=person # name属性是Process中的属性,标示进程的名字 4 super().__init__() # 执行父类的初始化方法会覆盖name属性 5 #self.name = person # 在这里设置就可以修改进程名字了 6 #self.person = person #如果不想覆盖进程名,就修改属性名称就可以了 7 def run(self): 8 print(\'%s正在和网红脸聊天\' %self.name) 9 # print(\'%s正在和网红脸聊天\' %self.person) 10 time.sleep(random.randrange(1,5)) 11 print(\'%s正在和网红脸聊天\' %self.name) 12 # print(\'%s正在和网红脸聊天\' %self.person) 13 14 15 p1=Myprocess(\'哪吒\') 16 p1.start() 17 print(p1.pid) #可以查看子进程的进程id
锁 —— 与线程一样 , 进程一般情况不需要加锁, 当共同使用一段代码时, 必须加锁,
进程间通信——队列和管道(multiprocess.Queue、multiprocess.Pipe)
进程间通信
IPC(Inter-Process Communication)
队列
概念介绍
创建共享的进程队列,Queue是多进程安全的队列,可以使用Queue实现多进程之间的数据传递。
以上是关于Python 中的进程与 锁的主要内容,如果未能解决你的问题,请参考以下文章
Python进阶_进程与线程中的lock(互斥锁递归锁信号量)
在 Python 多处理进程中运行较慢的 OpenCV 代码片段