Tool-CMake-make -j[cpu_num]

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Tool-CMake-make -j[cpu_num]相关的知识,希望对你有一定的参考价值。

Tool-CMake-make -j[cpu_num]

https://blog.csdn.net/KingOfMyHeart/article/details/105438151

执行make指令效率较低。
使用make -j后面跟一个数字,让make最多允许n个编译命令同时执行,可以更有效的利用CPU资源。

假设我们的系统是cpu是8核,在不影响其他工作的情况下,我们可以make -j8 将cpu资源充分利用起来。

一般来说,最大并行任务数为cpu_num * 2

cpu_num = \'cat /proc/stat |grep cpu[0-9] -c\'
echo "make -j$cpu_num"
make -j$cpu_num

NLP-Word Embedding-Attention机制

参考技术A

attention机制是个坑。
要明白attention机制,首先要明白seq2seq
要明白seq2sql,首先要明白RNN
要明白RNN,首先要明白MLP和BP算法
这是attention机制的前坑

明白attention机制后,要明白self-attention,以及attention在诸多领域的应用
明白self-attention后,要明白Transformer
明白transformer后,要明白Bert
这是attention机制的后坑

即一个序列生成另一个序列。最直观的就是机器翻译,一句英文翻译成一句中文。或者应答,问一句答一句。
模型结构:输入数据连接一个 encoder(编码器) 得到编码输出又称中间状态 C 然后连接到一个 decoder(解码器) 最后解码器的输出作为模型输出

也可以发现,RNN星球的外星人,执着于吃自己的隐层状态h(x),同时,其隐层状态可以继续计算得到输出y。当然,他们也会去吃y,当手头没有输入时他们会把前一个y当输入吃掉,就像小D。当手头有输入时,他们可以不吃y而吃输入。就像小E。至于为什么这样,可能是他们当地人的习惯吧,总得有点下shit菜不是。

小E和小D是RNN星球的外星小伙伴,这个大家都知道了
小E吃了一筐水果小D来了发现没了很不开心,这个大家都知道了
当小D骄傲的说出小E具体吃了什么时,他们发现,小D说的没有那么准。
两人对视一会,发现问题:小D只吃了小E最后的h(an),那最后的h(an)携带的前面的信息就很少了。要改变!要把小E所有的h(ai)都用上!而且,要尽量找到对应关系,例如预测第一个时,要尽量用到第一个h(a)的信息。

具体是怎么做的呢?
小D是这么想的,首先,让小E把他拉的所有h(a)都给他。即[h(a1),h(a2),h(a3)...h(an)],每个h(ai)都是一个向量,所以这些组成了一个矩阵K
然后,小D每拉出一个h(b)就去这个矩阵分别计算该h(b)和每个h(a)的相关度,得到一系列分数,按照分数大小来组合这些h(a)从而得到一个专属于该h(b)的C。下图中的a即是表示对应的分数

还有一个问题,怎么计算相关度?cos相关度,点乘,皮尔森相关等都可以
最后一个问题,初始的隐藏状态是什么,因为没有用到非attention机制的h(h(an))。老规矩,随机初始化。

所以,attention机制,像是一种配方,根据当前不同位置来调配encoder一系列隐藏状态h(ai)的组合比重,这显然是很有道理的,因为就拿翻译来说,词的顺序往往是对应的。

简言之,encoder获取状态矩阵K,decoder根据每一轮隐藏状态h计算注意力分数获得注意力向量C,拼接h和C获得输出y,y和h进入下一轮decode获得新的h。。。

上一步有个矩阵K,来自encoder。而来自decoder的h类似于一个查询(query)。这个查询分别与K中的不同向量h(a)(key)计算相关度得到分数(score),然后利用分数做权重与对应的h(a)(value)加权求和得到自己想要的结果C。
这里我为什么要写query,key,value呢?是为了讲解self-attention。注意这里key和value都是指h(a)即encoder的状态矩阵。
那如果这个query不来自decoder而来自encoder本身呢?即自己查自己?
有了query,key,value概念之后,就比较好理解self-attention了。
首先,输入的词汇(小E吃的水果也好,翻译中一句话分成的一组词也好)都是要embedding成一个固定长度的向量x才输入模型的。即对于一句话的所有词,组成了一个输入矩阵X。
然后,我们随机生成3个矩阵Q,K,V对应query,key,value
对于一个输入x,
用x点乘Q得到query
用x点乘K得到key
用x点乘V得到value
这样,对于一句话中的所有x,都可以得到对应的query,key,value

有了这些就好办了
每个x,都可以用自己的query去和其他key计算score,然后用该score和对应的其他value来计算自己的注意力向量C。经过这样的计算,x变成了C。

上图中的z即为C。而score到softmax之间的步骤是一些tricks,不用管。

同样,可以多叠加几层self-attention,用同样的操作不同的QKV矩阵由c变成cc,变成ccc
这就是self-attention。

self-attention像是一种向量转换。x变为c,维度没变,值变了。而同时,这种转变又蕴含了x与上下文x之间的关系。rnn也可以实现由x变为另一个向量,同时也考虑了上下文关系,但是,他存在循环神经网络的弊端,无法并行。而self-attention组成的transformer则可以实现并行运算。即,他不需要等待下一个状态h计算出来再计算C,而是直接通过QKV矩阵和当前x计算所得。
那QKV怎么得到?随机初始,训练所得。

https://caicai.science/2018/10/06/attention%E6%80%BB%E8%A7%88/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://zhuanlan.zhihu.com/p/37601161
https://jalammar.github.io/illustrated-transformer/

以上是关于Tool-CMake-make -j[cpu_num]的主要内容,如果未能解决你的问题,请参考以下文章