第二章python基础续

Posted cnlogs1

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了第二章python基础续相关的知识,希望对你有一定的参考价值。

2.6基本数据类型——列表

列表的创建

list_test=[‘张三‘,‘李四’,alex]
#
list_test=list(alex)
#
list_test=list([‘张三‘,‘李四’,alex])

列表的特点和常用操作

特性:

1.可存放多个值

2.按照从左到右的顺序定义列表元素,下标从0开始顺序访问,有序

技术分享图片

3.可修改指定索引位置对应的值,可变

常规操作:

#索引
>>> l = [egon,alex,seven,yuan]
>>> l[0]
egon
>>> l[2]
seven

#切片
>>> l[0:2]
[egon, alex]
>>> l[2:5]
[seven, yuan]
>>> l[:2]
[egon, alex]
>>> l[2:]
[seven, yuan]
>>> l[:]
[egon, alex, seven, yuan]
>>> l[::2]
[egon, seven]
>>> l[::-1]
[yuan, seven, alex, egon]

#追加
>>> l.append("eva")
>>> l
[egon, alex, seven, yuan, eva]

#删除
>>> l.remove(eva)
>>> l
[egon, alex, seven, yuan]
>>> l.pop()
yuan
>>> l
[egon, alex, seven]

#长度
>>> len(l)
3

#包含
>>> seven in l
True
>>> yuan in l
False

#循环:为什么是“i”?
>>> for i in l:
    print(i)


egon
alex
seven

列表与字符串——split和join

#分割
>>> s = hello world
>>> s.split( )
[hello, world]
>>> s2= hello,world
>>> s2.split(,)

#连接
>>> l = [hi,eva]
>>> !.join(l)
hi!eva

2.7基本数据类型——元素

元组的定义和特性

定义:与列表类似,只不过[]改成()

特性:

  1.可存放多个值
  2.不可变
  3.
按照从左到右的顺序定义元组元素,下标从0开始顺序访问,有序

元素的创建:

ages = (11, 22, 33, 44, 55)
#
ages = tuple((11, 22, 33, 44, 55))

元素的常规操作:

#索引
>>> ages = (11, 22, 33, 44, 55)
>>> ages[0]
11
>>> ages[3]
44
>>> ages[-1]
55

#切片:同list  

#循环
>>> for age in ages:
    print(age)


11
22
33
44
55

#长度
>>> len(ages)
5

#包含
>>> 11 in ages
True
>>> 66 in ages
False
>>> 11 not in ages
False

元素特性:

1.可以存放多个值

当它只有一个值时

t = (1,)
t = (1)   #<==>t = 1

元组中不仅可以存放数字、字符串,还可以存放更加复杂的数据类型

2.不可变原则

元组本身不可变,如果元组中还包含其他可变元素,这些可变元素可以改变

2.8可变、不可变数据类型和hash

可变类型:列表

不可变类型:数字、字符串、元组

列表:

>>> l = [1,2,3,4]
>>> id(l)
4392665160
>>> l[1] = 1.5
>>> l
[1, 1.5, 3, 4]
>>> id(l)
4392665160

数字:

>>> a = 1
>>> id(a)
4297537952 
>>> a+=1
>>> id(a)
4297537984

字符串:

#例1
>>> s = hello
>>> s[1] = a
Traceback (most recent call last):
  File "<pyshell#5>", line 1, in <module>
    s[1] = a
TypeError: str object does not support item assignment
#例2
>>> s = hello
>>> id(s)
4392917064
>>> s +=  world
>>> s
hello world
>>> id(s)
4393419504

元素——不允许修改

>> t = (1,2,3,4)
>>> t[1] = 1.5
Traceback (most recent call last):
  File "<pyshell#10>", line 1, in <module>
    t[1] = 1.5
TypeError: tuple object does not support item assignment

hash:

>>> hash("张三")
6480394008723176318
>>> hash("李四")
-114706925611844552
>>> hash("王老五")
3250319002057530081

注:不可变的数据类型是可以被hash的,可变类型是不可以hash的。

2.9基本数据类型——字典

字典是python语言中唯一的映射类型。

定义:{key1:value1,key2:value2}

1、键与值用冒号“:”分开;
2、项与项用逗号“,”分开;

特性:

1.key-value结构
2.key必须可hash、且必须为不可变数据类型、必须唯一
3.可存放任意多个值、可修改、可以不唯一
4.无序

字典创建:

person = {"name": "alex", age: 20}
#
person = dict(name=seven, age=20)
#
person = dict({"name": "egon", age: 20})
#

person = dict(([name,苑昊],[文周,18]))
{}.fromkeys(seq,100) #不指定100默认为None
#注意
>>> dic={}.fromkeys([k1,k2],[])
>>> dic
{k1: [], k2: []}
>>> dic[k1].append(1)
>>> dic
{k1: [1], k2: [1]}

字典的常规操作:

键、值、键值对
    1、dic.keys() 返回一个包含字典所有KEY的列表;
    2、dic.values() 返回一个包含字典所有value的列表;
    3、dic.items() 返回一个包含所有(键,值)元祖的列表;
    4、dic.iteritems()、dic.iterkeys()、dic.itervalues() 与它们对应的非迭代方法一样,不同的是它们返回一个迭代子,而不是一个列表;
新增
    1、dic[new_key] = new_value;
    2、dic.setdefault(key, None) ,如果字典中不存在Key键,由 dic[key] = default 为它赋值;_
删除
    1、dic.pop(key[,default]) 和get方法相似。如果字典中存在key,删除并返回key对应的vuale;如果key不存在,且没有给出default的值,则引发keyerror异常;
    2、dic.clear() 删除字典中的所有项或元素;    
修改
    1、dic[key] = new_value,如果key在字典中存在,new_value将会替代原来的value值;
    2、dic.update(dic2) 将字典dic2的键值对添加到字典dic中
查看
    1、dic[key],返回字典中key对应的值,若key不存在字典中,则报错;
    2、dict.get(key, default = None) 返回字典中key对应的值,若key不存在字典中,则返回default的值(default默认为None)
循环
    1、for k in dic.keys()
    2、for k,v in dic.items()
    3、for k in dic
长度
    1、len(dic)

字典的工厂函数

class dict(object):
    """
    dict() -> new empty dictionary
    dict(mapping) -> new dictionary initialized from a mapping object‘s
        (key, value) pairs
    dict(iterable) -> new dictionary initialized as if via:
        d = {}
        for k, v in iterable:
            d[k] = v
    dict(**kwargs) -> new dictionary initialized with the name=value pairs
        in the keyword argument list.  For example:  dict(one=1, two=2)
    """
    def clear(self): # real signature unknown; restored from __doc__
        """ D.clear() -> None.  Remove all items from D. """
        pass

    def copy(self): # real signature unknown; restored from __doc__
        """ D.copy() -> a shallow copy of D """
        pass

    @staticmethod # known case
    def fromkeys(*args, **kwargs): # real signature unknown
        """ Returns a new dict with keys from iterable and values equal to value. """
        pass

    def get(self, k, d=None): # real signature unknown; restored from __doc__
        """ D.get(k[,d]) -> D[k] if k in D, else d.  d defaults to None. """
        pass

    def items(self): # real signature unknown; restored from __doc__
        """ D.items() -> a set-like object providing a view on D‘s items """
        pass

    def keys(self): # real signature unknown; restored from __doc__
        """ D.keys() -> a set-like object providing a view on D‘s keys """
        pass

    def pop(self, k, d=None): # real signature unknown; restored from __doc__
        """
        D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
        If key is not found, d is returned if given, otherwise KeyError is raised
        """
        pass

    def popitem(self): # real signature unknown; restored from __doc__
        """
        D.popitem() -> (k, v), remove and return some (key, value) pair as a
        2-tuple; but raise KeyError if D is empty.
        """
        pass

    def setdefault(self, k, d=None): # real signature unknown; restored from __doc__
        """ D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D """
        pass

    def update(self, E=None, **F): # known special case of dict.update
        """
        D.update([E, ]**F) -> None.  Update D from dict/iterable E and F.
        If E is present and has a .keys() method, then does:  for k in E: D[k] = E[k]
        If E is present and lacks a .keys() method, then does:  for k, v in E: D[k] = v
        In either case, this is followed by: for k in F:  D[k] = F[k]
        """
        pass

    def values(self): # real signature unknown; restored from __doc__
        """ D.values() -> an object providing a view on D‘s values """
        pass

....略....

2.10基本数据类型——集合

集合中元素的三个特征:

1.确定性(元素必须可hash)

2.互异性(去重)

3.无序性(集合中的元素没有先后之分),如集合{3,4,5}和{3,5,4}算同一个集合。

注意:集合存在的意义就在于去重和关系运算。

用集合解决问题

l={张三‘,’李四‘,’老男孩‘}   #集合定义
p={’张三‘,’李四‘,‘alex}
l_p=l&p        #集合求集
print(l_p)

技术分享图片

集合的定义:

l={1,2,3,1} #此处应该说明集合“去重”的效果
#定义可变集合
>>> set_test=set(hello)#此处说明集合的“无序性”
>>>set_test
{l,o,e,h}
#改为不可变集合frozenset
>>>f_set_test=frozenset(sey_test)
>>>f_set_test
frozenset{l,e,h,o}

集合的关系运算:

|,|=合集,也叫并集

l={张三‘,‘李四‘,‘老男孩‘}
p={张三‘,‘李四‘,‘alex‘}
print(l.union(P))
print(l|p)

-,-=差集

l={张三,李四,老男孩}
p = {张三,李四,alex}
print(l.difference(p))
print(l-p)

^,^=对称差集

a = {1,2,3}
b = {2,3,4,5}
print(a.symmetric_difference(b))
print(a^b)

包含关系

in,not in:判断某元素是否在集合内

= =,!:判断两个集合是否相等

两个集合之间一般有是三种关系,相交、包含、不相交。在Python中分别用下面的方法判断:

  • set.isdisjoint(s):判断两个集合是不是不相交
  • set.issuperset(s):判断集合是不是包含其他集合,等同于a>=b
  • set.issubset(s):判断集合是不是被其他集合包含,等同于a<=b

集合的常用操作

元素的增加:

>>> a={1,2}
>>>a.update([3,4],[1,2,7])
>>>a
{1,2,3,4,7}
>>>a.update("hello")
>>>a
{1,2,3,4,7,h,e,l,o}
>>>a.add("hello")
>>>a
{1,2,3,4,hello",7,h,e,l,o}

元素的删除集合删除单个元素有两种方法:

元素不在原集合中时:

set.discard不会抛出异常

set.remove(x)会抛出Key Error错误

>>> a={1,2,3,4}
>>> a.discard(1)
>>> a
{2, 3, 4}
>>> a.discard(1)
>>> a
{2, 3, 4}
>>> a.remove(1)
Traceback (most recent call last):
  File "<input>", line 1, in <module>
KeyError: 1

pop():由于集合是无序的,pop返回的结果不能确定,且当集合为空时调用pop会抛出Key Error错误,clear():清空集合

>>> a={3,"a",2.1,1}
>>> a.pop()
>>> a.pop()
>>> a.clear()
>>> a
set()
>>> a.pop()
Traceback (most recent call last):
  File "<input>", line 1, in <module>
KeyError: pop from an empty set

2.11collections模块

collections模块在内置数据类型(dict、list、set、tuple)基础上,还提供几个额外的数据类型:

Chain Map、Counter、dequ、defaultdict、namedtuple和orderdict等

1.namedtuple: 生成可以使用名字来访问元素内容的tuple子类
2.deque: 双端队列,可以快速的从另外一侧追加和推出对象
3.Counter: 计数器,主要用来计数
4.OrderedDict: 有序字典
5.defaultdict: 带有默认值的字典

nameduple

amedtuple是一个函数,它用来创建一个自定义的tuple对象,并且规定了tuple元素的个数,并可以用属性而不是索引来引用tuple的某个元素。(注:tuple是不变集合)

验证创建的Piont对象是tuple的一种子类:

>>>isinstance(p,Piont)
True
>>>isinstance(p,Piont)
True

如果要用坐标和半径表示一个园,也可以用nameduple定义:

#namedtuple(‘名称‘,[属性list]):
Circle=namedtuple(Circle,[x,y,r])

deque

deque是为了高效实现列表,适合队列和栈:

>>>from collections import deque
>>>q=deque([a,b,c])
>>>q.append(x)
>>>q.appendleft(y)
>>>q
deque([y,a,b,c,x])

deque除了实现listde append()和pop()外,还支持append left()和popleft(),这样就可以非常高效的往头部添加或删除元素

defaultdict

使用dict时,如果引用的Key不存在,就会抛出Key Error。如果不希望Key不存在时,返回一个默认值,就可以用defaultdict:

>>> from collections import defaultdict
>>> dd = defaultdict(lambda: N/A)
>>> dd[key1] = abc
>>> dd[key1] # key1存在
abc
>>> dd[key2] # key2不存在,返回默认值
N/A

ordereddict

使用dict时,Key是无序的。在对dict做迭代时,我们无法确定Key的顺序。

如果要保持Key的顺序,可以用OrderedDict

>>> from collections import OrderedDict
>>> d = dict([(a, 1), (b, 2), (c, 3)])
>>> d # dict的Key是无序的
{a: 1, c: 3, b: 2}
>>> od = OrderedDict([(a, 1), (b, 2), (c, 3)])
>>> od # OrderedDict的Key是有序的
OrderedDict([(a, 1), (b, 2), (c, 3)])

注意,orderdict的Key会按照插入的顺序排列,不是Key本身排序:

>>> od = OrderedDict()
>>> od[z] = 1
>>> od[y] = 2
>>> od[x] = 3
>>> od.keys() # 按照插入的Key的顺序返回
[z, y, x]

ordereddict可以实现FIFO(先进先出)的dict,当容量超出限制时,先删除最早添加的Key:

from collections import OrderedDict

class LastUpdatedOrderedDict(OrderedDict):

    def __init__(self, capacity):
        super(LastUpdatedOrderedDict, self).__init__()
        self._capacity = capacity

    def __setitem__(self, key, value):
        containsKey = 1 if key in self else 0
        if len(self) - containsKey >= self._capacity:
            last = self.popitem(last=False)
            print remove:, last
        if containsKey:
            del self[key]
            print set:, (key, value)
        else:
            print add:, (key, value)
        OrderedDict.__setitem__(self, key, value)

Counter

counter是一个简单的计数器,例如,统计字符出现的个数:

>>>form collertions import Counter
>>>c=counter()
>>>for ch in programming:
...         c[ch]=c[ch]+1
...
>>>c
Counter({g,2,m:2,r:2,a:1,i:1,o:1,n:1,p:1})

Counter实际上也是dicde 一个子类,上面的结果可以看出,字符’g‘、‘m‘、‘r‘各出现了两次,其他字符各出现了一次。

2.12本章小结

基本数据类型:

可变的数据类型:list dict set

不可变数据类型:数字类(bool,int,float,cinpiex)、str  tuple  frozenset

扩展数据类型collectins:

1.namedtuple(): 生成可以使用名字来访问元素内容的tuple子类
2.deque: 双端队列,可以快速的从另外一侧追加和推出对象
3.Counter: 计数器,主要用来计数
4.OrderedDict: 有序字典
5.defaultdict: 带有默认值的字典

 




以上是关于第二章python基础续的主要内容,如果未能解决你的问题,请参考以下文章

Python基础续(基础数据类型)

python学习之路——基础篇模块(续)

第三章 Python基础——文件操作&函数 续

续:纠正:ubuntu7.04可以安装,而且完美的安装 ! for《Oracle-10.2.0.1,打补丁10.2.0.5:在 debian 版本4不含4以上,及 ubuntu 7.04不含(代码片段

8.Python基础语法续光说不练假把式,上题

8.Python基础语法续光说不练假把式,上题