R语言随机波动模型SV:马尔可夫蒙特卡罗法MCMC正则化广义矩估计和准最大似然估计上证指数收益时间序列|附代码数据

Posted 大数据部落

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了R语言随机波动模型SV:马尔可夫蒙特卡罗法MCMC正则化广义矩估计和准最大似然估计上证指数收益时间序列|附代码数据相关的知识,希望对你有一定的参考价值。

全文链接:http://tecdat.cn/?p=31162

最近我们被客户要求撰写关于SV模型的研究报告,包括一些图形和统计输出

本文做SV模型,选取马尔可夫蒙特卡罗法(MCMC)、正则化广义矩估计法和准最大似然估计法估计。

模拟SV模型的估计方法:

sim <- svsim(1000,mu=-9, phi = 0.97, sigma = 0.15)

print(sim)

summary(sim)

plot(sim)

绘制上证指数收益时间序列图、散点图、自相关图与偏自相关图

我们选取上证指数5分钟高频数据:

data=read.csv("上证指数-5min.csv",header=TRUE)
#open:开盘价  close:收盘价 vol:成交量 amount:成交额
head(data,5)  #观察数据的头5行
tail(data,5)  #观察数据的最后5行
Close.ptd<-data$close
Close.rtd<-diff(log(Close.ptd))  #指标一:logReturn
rets=diff(data$close)/data$close[-length(data$close)]  #指标二:Daily Returns,我们选择Daily Returns
library(tseries)
adf.test(rets)

## 绘制上证指数收益时间序列图、散点图、自相关图与偏自相关图
Close.ptd.ts<-ts(Close.ptd,start=c(2005,1,4),freq=242)  
plot(Close.ptd.ts, type="l",main="(a) 上证指数日收盘价序列图",

acf(Close.rtd,main=\'\',xlab=\'Lag\',ylab=\'ACF\',las=1)    
title(main=\'(b) 上证指数收益率自相关检验\',cex.main=0.95)

pacf(Close.rtd,main=\'\',xlab=\'Lag\',ylab=\'PACF\',las=1)               
title(main=\'(c) 上证指数收益率偏自相关检验\',cex.main=0.95)
def.off

## Q-Q图、经验累积分布ecdf图、密度图、直方图 
qqnorm(Close.rtd,main="(a) 上证指数收益率Q-Q图",cex.main=0.95,
       xlab=\'理论分位数\',ylab=\'样本分位数\')            
qqline(Close.rtd)                                 
#经验累积分布ecdf图
plot(ECD,lwd = 2,main="(b) 上证指数收益率累积分布函数图",cex.main=0.95,las=1) 
xx <- unique(sort(c(seq(-3, 2, length=24), knots(ECD))))         
abline(v = knots(ECD), lty=2, col=\'gray70\')                           
x1 <- c((-4):3)             # 设定区间范围
lines(x1,pnorm(x1,mean(Close.rtdC[1:10]),sd(Close.rtd[1:10])))  
#密度图
plot(D, main="(c) 上证指数核密度曲线图 ",xlab="收益", ylab=\'密度\',
     xlim = c(-7,7), ylim=c(0,0.5),cex.main=0.95)       
polygon(D, col="gray", border="black")                 
curve(dnorm,lty = 2, add = TRUE)                        

lines(x2,dnorm(x2,mean=0,sd=1))      
abline(v=0,lty = 3)                                     
legend("topright", legend=c("核密度","正态密度"),lty=c(1,2),cex=0.5)
#直方图
hist(Close.rtd[1:100],xaxt=\'n\',main=\'(d) 上证指数收益率直方图\',
     xlab=\'收益/100\',ylab=\'密度\', freq=F,cex.main=0.95,las=1)        
lines(x2,dnorm(x2,mean(Close.rtd[1:100]),sd(Close.rtd[1:100]))) 
axis(1,at=axTicks(1),labels = as.integer(axTicks(1))/100 )


点击标题查阅往期内容

【视频】随机波动率SV模型原理和Python对标普SP500股票指数预测|数据分享

左右滑动查看更多

01

02

03

04

SV模型


  N <- length(logReturn)
  mu <- (1/N)*sum(logReturn)
  sqrt((1/N) * sum((logReturn - mu)^2))


  return=-1.5*log(h)-y^2/(2*h)-(log(h)-mu)^2/(2*sigma2)

马尔可夫链蒙特卡罗估计

该模型使用了Kastner和Fruhwirth-Schnatter所描述的算法。使用的R代码是:

###Markov Chain Monte Carlo

summary(mcmc)

准最大似然估计

SV模型可以用QML方法在R中用许多不同的状态空间和Kalman滤波包来估计。


  a0=c(parm[1])

  P0=matrix(parm[3]^2/(1-parm[2]^2))

  dt=matrix(parm[1]*(1-parm[2]))

  ct=matrix(-1.27)

  Tt=matrix(parm[2])

  Zt=matrix(1)

  HHt=matrix(parm[3]^2)

  GGt=matrix(pi^2/2)

  ans<-fkf(a0=sp$a0,P0=sp$P0,dt=sp$dt,ct=sp$ct,Tt=sp$Tt,Zt=sp$Zt,HHt=sp$HHt,GG

正则化广义矩阵

在R函数中定义矩条件,然后估计参数0。

moments <- c (

    m1 = sqrt(2/pi)*exp(mu/2 + sig2h/8),

    m2 = exp(mu +  sig2h/2 ) ,

    m3 = 2*sqrt ( 2/pi ) * exp( 3*mu/2 + 9*sig2h/8 ) ,
    gmm(g = sv.moments , x =rets , t0=c(mu=-10, phi=0.9,sigmaeta= 0.2),


点击文末 “阅读原文”

获取全文完整代码数据资料。

本文选自《R语言随机波动模型SV:马尔可夫蒙特卡罗法MCMC、正则化广义矩估计和准最大似然估计上证指数收益时间序列》。

点击标题查阅往期内容

HAR-RV-J与递归神经网络(RNN)混合模型预测和交易大型股票指数的高频波动率
Matlab马尔可夫链蒙特卡罗法(MCMC)估计随机波动率(SV,Stochastic Volatility) 模型
R语言隐马尔可夫模型HMM连续序列重要性重抽样CSIR估计随机波动率模型SV分析股票收益率时间序列
马尔可夫Markov区制转移模型分析基金利率
马尔可夫区制转移模型Markov regime switching
时变马尔可夫区制转换MRS自回归模型分析经济时间序列
马尔可夫转换模型研究交通伤亡人数事故时间序列预测
如何实现马尔可夫链蒙特卡罗MCMC模型、Metropolis算法?
Matlab用BUGS马尔可夫区制转换Markov switching随机波动率模型、序列蒙特卡罗SMC、M H采样分析时间序列
R语言BUGS序列蒙特卡罗SMC、马尔可夫转换随机波动率SV模型、粒子滤波、Metropolis Hasting采样时间序列分析
matlab用马尔可夫链蒙特卡罗 (MCMC) 的Logistic逻辑回归模型分析汽车实验数据
stata马尔可夫Markov区制转移模型分析基金利率
PYTHON用时变马尔可夫区制转换(MRS)自回归模型分析经济时间序列
R语言使用马尔可夫链对营销中的渠道归因建模
matlab实现MCMC的马尔可夫转换ARMA - GARCH模型估计
R语言隐马尔可夫模型HMM识别不断变化的股票市场条件
R语言中的隐马尔可夫HMM模型实例
用机器学习识别不断变化的股市状况—隐马尔科夫模型(HMM)
Matlab马尔可夫链蒙特卡罗法(MCMC)估计随机波动率(SV,Stochastic Volatility) 模型
MATLAB中的马尔可夫区制转移(Markov regime switching)模型
Matlab马尔可夫区制转换动态回归模型估计GDP增长率
R语言马尔可夫区制转移模型Markov regime switching
stata马尔可夫Markov区制转移模型分析基金利率
R语言如何做马尔可夫转换模型markov switching model
R语言隐马尔可夫模型HMM识别股市变化分析报告
R语言中实现马尔可夫链蒙特卡罗MCMC模型

matlab实现MCMC的马尔可夫切换ARMA - GARCH模型估计

系统切换模型,尤其是马尔可夫切换(MS)模型,被认为是捕获时间序列非线性的有前景的方法。将MS模型的元素与完全自回归移动平均 - 广义自回归条件异方差(ARMA - GARCH)模型相结合,给参数估计器的计算带来了严重的困难。

我们制定了完整的MS- ARMA - GARCH模型及其贝叶斯估计。这有利于使用马尔可夫链蒙特卡罗方法,并允许我们开发一种算法来计算我们模型的方案和参数的贝叶斯估计。

图1和图2比较了两种模型的估计后验概率。我们的模型能够更清晰地区分不同的状态,这自然是一个非常理想的特征。

图1.修正的Hamilton-Susmel模型在纽约证券交易所每周回报的不同制度的后验概率。

 

图2.对于我们的模型,方案1-3的后验概率。相应的参数估计值见表2

技术分享图片

接下来,我们比较两个模型的样本ACF。由于在两个模型中估计ARMA参数大致相同,因此我们仅显示样本ACF的平方残差。图3和图4显示我们的模型更好地捕获数据的自相关结构。因此,我们得出结论,完整的MS-ARMA-GARCH模型优于Hamilton-Susmel模型等模型。

图3.使用表1的估计条件后自相关

 

图4.我们的模型的条件后验自相关

 

然而,两种算法都在估计中显示出问题,其特征在于MCMC链的非常慢的收敛以及在基于EM的算法的情况下对起始参数的强烈依赖性。

图5.用表3中的估计参数化的MS- GARCH制剂的第二种方案的后验概率

技术分享图片

图6. Haas 等人的第二种方案的后验概率。

技术分享图片

结论

我们开发了一种MCMC方法来计算完整MS- ARMA - GARCH模型的参数估计值,用于描述在不同市场中观察到的计量经济时间序列中的某些现象。

以上是关于R语言随机波动模型SV:马尔可夫蒙特卡罗法MCMC正则化广义矩估计和准最大似然估计上证指数收益时间序列|附代码数据的主要内容,如果未能解决你的问题,请参考以下文章

matlab实现MCMC的马尔可夫切换ARMA - GARCH模型估计

R语言实现bootstrap和jackknife检验方法

马尔可夫链蒙特卡罗法

蒙特卡罗方法生成指定状态空间下对应长度的马尔可夫链--MATLAB源程序

蒙特卡罗方法生成指定状态空间下对应长度的马尔可夫链--MATLAB源程序

R语言通过WinBUGS对MGARCH和MSV模型进行贝叶斯估计和比较